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Met wiskundige formules kun je niet spe-
len zolang je de functies niet begrijpt.
Het kost dan ook jaren om iets te ver-
staan van wat je doet of maakt, omdat
die abstracte puzzels op zichzelf lastiger
zijn dan de projecten.
Wanneer het uiteindelijk lukt de boel te
kraken ontstaat er iets, inzichtelijk en
waardevol, over de werking van de din-
gen, een grenzeloos heelal van wonder-
lijke variatie.
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Abstract

This thesis develops a vibration-based identification technique to determine the
elastic properties of the constituent layers of layered materials. The presented
mixed numerical-experimental technique (MNET) derives the layer properties
from the resonant frequencies of rectangular beam- or plate-shaped specimens,
and is able to identify the in-plane elastic properties of both isotropic and
orthotropic materials. An optional post-processing step allows the estimation
of the uncertainty of the identified elastic parameters.
The thesis comprises three main parts. The first part, chapters 1 to 4, intro-
duces the mathematical tools that are required to construct an MNET pro-
cedure. The second part, chapters 5 to 7, uses these mathematical tools to
build a series of vibration-based identification procedures for the identification
of the elastic properties of layered materials. The last part, chapters 8 and 9,
provides an experimental validation together with a number of applications of
the developed identification routines.
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Preface

The principal goal of this thesis is to finalise my doctoral training at the
Katholieke Universiteit Leuven. However, the ambition of this text reaches
further than just being a report of the research that was performed during my
doctoral training.

Goal

Besides developing identification routines for layered materials, this text pre-
sents a detailed discussion on the vibration-based identification of in-plane
elastic material properties. Furthermore, it also aims at providing a sound
theoretical foundation on how to develop mixed numerical-experimental tech-
niques (MNET) for material identification purposes.
A serious effort was made to present the content as comprehensible as possible.
Although this text contains a substantial amount of theory, is does not give any
theoretical overview with the sole purpose of providing an overview. All the
presented theory is strictly necessary to develop MNET identification routines.
Moreover, this thesis does not present an extensive literature review. The main
reason for this is the lack of interesting articles on the identification of the elas-
tic properties of layered materials. Most articles dealing with MNET-based
material identification are written by researchers that focus on optimisation
theory. Usually, the material identification problem is used as a ‘simple’ ex-
ample to illustrate the use of a novel optimisation technique. Although these
articles are very interesting from an optimisation point of view, they are usually
quite disappointing from a material identification point of view.

Audience

This thesis addresses two different audiences: (a) engineers who want to develop
mixed numerical-experimental techniques for the identification of material pa-
rameters, and (b) scientists who are interested in determining elastic material
properties using vibration-based identification techniques.
To use this text as a guide to develop an MNET, a basic knowledge of the
theory behind the finite element method is required. Chapters 3, 4, and 6
provide the information to develop MNET routines. If one wishes to add an
uncertainty analysis procedure to the MNET, chapter 7 is essential.
If one wants to use the text to learn more about vibration-based identification
techniques for in-plane elastic properties, chapters 1, 6, and 8 are important.
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The study of these chapters only requires an understanding of the fundamental
concepts of mechanical vibrations, like the phenomenon of resonance.



Nederlandstalige
Samenvatting

Trillingsgebaseerde Methodes voor de Identi-
ficatie van de Elastische Eigenschappen van
Gelaagde Materialen

Dit hoofdstuk bevat een Nederlandstalige samenvatting van de the-
sis. Deze samenvatting heeft dezelfde structuur als de thesis; elke
sectie van de samenvatting stemt overeen met een hoofdstuk van de
thesis.

Inleiding

Materiaal Identificatie

Numerieke simulaties zijn een onmisbaar hulpmiddel geworden in het ontwikkel-
ingsproces van een technische structuur. Een zinvolle simulatie vereist een
nauwkeurige kennis van de materiaaleigenschappen van het numerieke model.
Deze parameters kunnen echter enkel op een experimentele wijze bepaald wor-
den.
Gelaagde materialen zijn een klasse van nieuwe materialen die steeds belan-
grijker wordt voor de productie van hoog performante mechanische compo-
nenten. Hun stijfheidseigenschappen zijn van fundamenteel belang voor de
berekening van spanningsvelden. Er bestaan reeds verschillende technieken
voor de bepaling van de stijfheidseigenschappen van materialen, maar in het
geval van gelaagde materialen leveren deze technieken enkel de ‘gemiddelde’
stijfheid van het volledige materiaal. Deze thesis spits zich toe op de ontwikkel-
ing van identificatieprocedures voor de bepaling van de elastische eigenschappen
van de individuele lagen van een gelaagd materiaal.

Trillingsgebaseerde Identificatietechnieken

Elastische eigenschappen worden traditioneel opgemeten met quasi-statische
proeven zoals uni-axiale trektesten of vierpuntsbuigingsproeven. De trillings-
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gebaseerde technieken bieden hier echter een zinvol alternatief. Met trillings-
gebaseerde testen kunnen de elastische eigenschappen op een contactloze wijze
bepaald worden, wat een belangrijk voordeel is in het geval van kleine monsters
of brosse materialen.
De trillingsgebaseerde aanpak steunt op het verband tussen het trillingsge-
drag en de elastische eigenschappen van een structuur. De trillingsgebaseerde
aanpak werd voor het eerste toegepast door Förster [1] in 1937. Förster ge-
bruikte de balk theorie van Euler om de elasticiteitsmodulus van een materiaal
te bepalen uit de resonantiefrequentie van de fundamentele buigingsmode van
een balkvormig monster. Försters methode werd door o.a. Pickett [2], Spinner
en Teft [3] verfijnd. Het werk van de laatste twee auteurs leverde de basis
voor een ASTM norm [4]. Deze norm standaardiseerde de trillingsgebaseerde
identificatie van de elastische eigenschappen van isotrope materialen.
De belangrijkste hinderpaal voor de verdere uitbreiding van de trillingsge-
baseerde methodes was het gebruik van analytische formules voor de beschrijv-
ing van het trillingsgedrag van de monsters. In 1986 toonde Sol [5] aan dat de
analytische formules kunnen vervangen worden door eindige elementen mod-
ellen. Deze doorbraak opende de weg voor de identificatie van de elastische
parameters van complexere materialen zoals gelaagde materialen.

Gemengde Numeriek-Experimentele Technieken

Sommige fysische eigenschappen kunnen zeer moeilijk of zelfs onmogelijke recht-
streeks opgemeten worden. In zo’n situatie moet de fysische eigenschap op een
indirecte manier bepaald worden. Dit kan door de fysische eigenschap af te lei-
den van een aantal gerelateerde grootheden die wel opgemeten kunnen worden.
Indien het verband tussen de fysische eigenschap en de opgemeten groothe-
den te complex wordt om analytische uit te drukken moet dit verband gelegd
worden met een numeriek model, en moeten de fysische grootheden bepaald
worden met een gemengde numeriek-experimentele techniek (GNET). Figuur 1
schets het algemeen concept van de gemengde numeriek-experimentele aanpak.

Opgelegde belasting Resulterende respons
Experiment
Testopstelling

Simulatie
Numeriek model

fysische eigenschappen

Figuur 1: Het algemeen concept van gemengde numeriek-experimentele tech-
nieken.

Numerieke modellen zijn meestal geformuleerd om respons van een systeem
te berekenen aan de hand van de systeem parameters (het directe probleem).
Maar in een GNET moeten een aantal systeem parameters bepaald worden aan
de hand van de respons van het systeem (het inverse probleem). De meeste nu-
merieke modellen kunnen echter niet op een adequate manier geherformuleerd
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worden zoals vereist voor het oplossen van het inverse probleem. De oplossing
van het inverse probleem kan dan enkel op een iteratieve manier gevonden wor-
den door de systeemparameters van het numerieke model ‘af te regelen’ totdat
de respons van het model overeenstemt met de opgemeten respons. Figuur 2
geeft de flowchart van een gemengde numeriek-experimentele techniek voor de
identificatie van materiaal parameters.PSfrag

Opgelegde belasting

Experiment
Testopstelling

Simulatie
Numeriek model

Opgemeten respons Berekende respons

Optimalisatie
Minimalisering responsieverschillen

Eigenschappen
Ja Nee

P
a
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Convergentie ?

Geschatte parameters

Figuur 2: De flowchart van een gemengde numeriek-experimentele techniek
(GNET) voor materiaalidentificatie.

In een eerste fase wordt een experiment uitgevoerd en wordt de opgelegde be-
lasting en resulterend respons opgemeten. Vervolgens wordt het uitgevoerde
experiment met een numeriek model gesimuleerd. De respons wordt berekend
met behulp van een ruwe schatting van de waarden van de ongekende model-
parameters. De respons van de simulatie wordt vergeleken met de opgemeten
respons en een set van parametercorrecties wordt geschat door middel van een
minimalisatie van de responsieverschillen. De gecorrigeerde modelparameters
worden in het numerieke model ingevoerd, en daarna wordt er een nieuwe it-
eratiecyclus gestart. Eenmaal de parametercorrecties kleiner zijn dan een wel
bepaalde limiet wordt de iteratielus afgebroken.
In het geval van trillingsgebaseerde materiaalidentificatie worden resonantiefre-
quenties gebruikt als responsies. Voor lineair elastische materialen zijn de res-
onantiefrequenties onafhankelijk van de opgelegde belasting. Hierdoor hoeft de
opgelegde belasting niet opgemeten te worden bij trillingsgebaseerde GNETs.

Lineaire Elasticiteit

In het geval van lineair elastische materialen wordt de spannings-rek relatie
gegeven door de wet van Hook. In het meest algemene geval bevat deze uit-
drukking 21 onafhankelijke stijfheidscoëfficiënten. Voor dunne, orthotrope ma-
terialen reduceert het aantal onafhankelijke stijheidscoëfficiënten zich tot vier:
E1, E2, G12, en ν12. In het geval van een isotroop materiaal zijn er slechts
twee onafhankelijke stijfheidscoëfficiënten: E en ν. Voor beide materialen zijn
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de mogelijke waardes die deze parameters kunnen aannemen begrensd. De
grenzen zijn gebaseerd op de wetten van de thermodynamica, en bepalen het
geldigheidsdomein van de oplossing van het materiaalidentificatie probleem.

Eindige Elementen Methode & Gevoeligheidsanalyse

De Eindige Elementen Methode

De eindige elementen methode (EEM) is een numerieke techniek die courant
gebruikt wordt bij de analyse van mechanische structuren, en is in het bijzonder
interessant voor de berekening van het trillingsgedrag van een structuur. Door
zijn veelzijdigheid is de eindige elementen methode uiterste geschikt voor de
ontwikkeling van krachtige GNET-gebaseerde technieken voor materiaalidenti-
ficatie.

Bij het gebruik van de EEM in trillingsgebaseerde GNETs is het aan te raden
om de monsters te modelleren met driedimensionale elementen met kwadratis-
che vormfuncties. De densiteit van het elementen grid wordt het best bepaald
aan de hand van een convergentie test.

Gevoeligheidsanalyse

Gevoeligheidsanalyse bestudeert de invloed van de inputparameters van een
bepaald model op de respons. In het geval van locale gevoeligheidsanalyse
wordt de invloed van een welbepaalde inputparameter op de respons bestudeerd
in een enkel punt van de inputparameterruimte. Een locale gevoeligheid-
sanalyse levert een aantal gevoeligheidscoëfficiënten op. Elke gevoeligheid-
scoëfficiënt geeft aan in welke mate een welbepaalde respons veranderd in
functie van een wijziging van de beschouwde inputparameter. Deze gevoe-
ligheidscoëfficiënten zijn dus een ideaal hulpmiddel bij de bepaling van de pa-
rametercorrecties die noodzakelijke om de gewenste wijziging van de respons
te verwezenlijken.

De gevoeligheidscoëfficiënten van de resonantiefrequenties ten opzichte van
de materiaalparameters (elastische eigenschappen en densiteit) worden best
bepaald door de sommatie van de gevoeligheden van de elementen van het
model, berekend met een semi-analytische differentiaal formulatie. De gevoe-
ligheden van de monsterparameters (lengte, breedte, laagdiktes) worden bij
voorkeur met een eindige differentie aanpak bepaald.

Correlatieanalyse

Trillingsgebaseerde materiaalidentificatie vereist een routine die in staat is het
type (buigingsmode, torsiemode, etc.) van de berekende modevormen automa-
tische te herkennen. Een automatische herkenning van de modevormen kan
gerealiseerd worden door de berekende modes te vergelijken met de modevor-
men van een referentiedatabase aan de hand van het ‘modal assurance criterion’
(MAC).
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Optimalisatietheorie

Inleiding

Optimalisatietheorie is van primordiaal belang voor gemengde numeriek-experi-
mentele technieken. GNETs bepalen de waardes van een aantal fysische groot-
heden door een dataset die opgemeten werd tijdens een experiment te vergelij-
ken met een dataset die berekend werd met een simulatiemodel. De resultaten
van de simulatie worden gecontroleerd door een aantal ongekende maar ‘afstel-
bare’ parameters. Er wordt verondersteld dat de correcte waardes van de fysis-
che parameters overeenstemmen met de waardes van de modelparameters die
resulteren in een optimale overeenstemming tussen de opgemeten en berekende
dataset. Een GNET vereist dus een oplossing van een optimalisatieprobleem.

Optimalisatietechnieken

Nulde-Orde Methodes

Nulde-orde technieken gebruiken enkel waardes van de kostfunctie om het op-
timalisatieprobleem op te lossen, ze gebruiken geen afgeleiden. In het geval
van GNETs hebben de nulde-orde technieken het voordeel dat ze geen toegang
tot de code van de eindige elementen software vereisen. Een evaluatie van
drie verschillende nulde-orde technieken (de simplex methode, genetische algo-
ritmes en neurale netwerken) toonde echter aan dat de nulde-orde technieken
een zeer groot aantal kostfunctieëvaluaties nodig hebben voor de bepaling van
het optimum. Aangezien de evaluatie van de kostfunctie van een trillingsge-
baseerde GNET een oplossing van één of meerdere eindige elementen modelen
omvat, is de beperking van het aantal kostfunctieëvaluaties van primair be-
lang. Nulde-orde technieken zijn dus niet geschikt voor de oplossing van de
trillingsgebaseerde GNETs wegens inefficiënt.

Daalmethodes

Daalmethodes (descent methods) zijn numerieke algoritmes die het minimum
van de kostfunctie op een iteratieve wijze bepalen. Elke iteratiestap omvat twee
acties: 1) het bepalen van een optimale daalrichting, 2) het verkleining van de
waarde van de kostfunctie door een stap te nemen in de optimale daalrichting.
Eerste-orde methodes zijn daalmethodes die enkel gradiëntinformatie gebruiken
voor de bepaling van de ideale daalrichting, tweede-orde methodes gebruiken
hiervoor zowel gradiënt- als Hessiaaninformatie. In het geval van tweede-orde
methodes levert de berekening van de ideale daalrichting meteen ook een op-
timale stap op. Uiteindelijke bleken de tweede-orde methodes zeer geschikt te
zijn voor het oplossen van de trillingsgebaseerde GNETs.

Trillingsgedrag van Gelaagde Materialen

Door middel van de klassieke laminaattheorie kan er aangetoond worden dat
het trillingsgedrag van gelaagde materialen bepaald wordt door totale stijfheid
van het materiaal en niet door de stijfheid van de individuele lagen. Dit heeft
als gevolg dat de laageigenschappen niet gëıdentificeerd kunnen worden aan de
hand van het trillingsgedrag van één enkel monster.
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De laagstijfheden kunnen enkel bepaald worden aan de hand van het trillings-
gedrag van een set van testmonsters die elk een verschillende laagconfigu-
ratie hebben. Twee laagconfiguraties verschillen van elkaar door verschillende
laagdiktes of laagsequenties. De uniciteit van de oplossing van de GNET is
enkel gegarandeerd indien het aantal gebruikte laagconfiguratie groter dan of
gelijk is aan het aantal materialen dat gëıdentificeerd moeten worden.

Identificatieroutines

De Vorm van de Monsters

Aan de hand van een gevoeligheidsanalyse werd de invloed van de vorm van
het monster op de informatiëınhoud van de resonantiefrequenties geëvalueerd.

Balkvormige Monsters

De resonantiefrequenties van balkvormige monsters blijken enkel informatie te
bevatten over de elasticiteitseigenschappen in de richting van de langs-as van
het monster. De buigingsfrequenties over de elasticiteitsmodulus, de torsiefre-
quenties leveren informatie over de glijdingsmodulus. Alle buigings- en tor-
siefrequenties blijken dezelfde informatie te bevatten, het gebruik van meerdere
buigings- of torsiefrequenties van eenzelfde monster levert dus geen extra in-
formatie op.

Plaatvormige Monsters

De resonantiefrequenties van plaatvormige monsters leveren informatie over de
vier orthotrope materiaalparameters. De informatiëınhoud is sterk afhankelijk
van de lengte/breedte verhouding van de plaat. Een optimale informatiëınhoud
wordt bekomen voor een plaat met een lengte/breedte verhouding die voldoet
aan uitdrukking (6.1).

Identificatieroutines

De identificatieroutine vereist een set monsters met een voldoende aantal laag-
configuraties zodat de uniciteit van de oplossing gegarandeerd is. In de exper-
imentele fase worden de resonantiefreqeunties van de verschillende monsters
opgemeten. De identificatie van de elastische eigenschappen start met het
modelleren van alle monster met behulp van de eindige elementen methode.
De resonantiefrequenties van alle monsters worden berekend met hulp van een
set geschatte waarden van de ongekende elastische parameters. De berekende
frequenties worden vergeleken met de gemeten frequenties, en een set van para-
metercorrecties wordt geschat uit de minimalisatie van de frequentieverschillen.
De elastische parameters worden aangepast en er wordt een nieuwe iteratie cy-
clus gestart. Het iteratieproces loopt tot de parametercorrecties kleiner zijn dan
de convergentielimiet. In het totaal worden drie varianten van deze procedure
gëıntroduceerd.
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Balkvormige Monsters

Mono-Oriëntatie Routines — De mono-oriëntatie routine gebruikt een set van
balkvormige monsters die allen uitgesneden zijn in dezelfde materiaalrichting.
In deze routine worden E en ν van de verschillende materiaallagen bepaald aan
de hand van de fundamentele buigings- en torsiefrequenties van de verschillende
test monsters. De glijdingsmodulus wordt bepaald in een post-processing stap
aan de hand van uitdrukking (2.31). Hoewel de mono-oriëntatie routine in the-
orie enkel geschikt is voor de identificatie van isotrope materialen is het toch
mogelijk om de elasticiteits- en glijdingsmodulus van licht anisotrope materi-
alen te bepalen. In dit geval kan de correctheid van het gëıdentificeerde Poisson
getal echter niet gegarandeerde worden.
Multi-Oriëntatie Routines — De multi-oriëntatie routine gebruikt een set van
balkvorimige monsters die allen uitgesneden zijn in een verschillende materi-
aalrichting. Met deze routine kunnen de vier orthotrope materiaalparameters
van de verschillende materiaallagen, E1, E2, G12, en ν12, bepaald aan de hand
van de fundamentele buigings- en torsiefrequenties van de verschillende test
monsters.

Plaatvormige Monsters

Deze routine gebruikt een set van een set van plaatvormige monsters die allen
een optimale lengte/breedte verhouding hebben. Deze routine bepaalt de
vier orthotrope materiaalparameters van de verschillende materiaal lagen, E1,
E2, G12, en ν12, aan de hand van de resonantiefrequenties van de eerste vijf
trillingsmodes van de verschillende test monsters.

Onzerkerheidsanalyse

Inleiding

Een opgemeten waarde van een fysische parameter is niet zinvol als ze niet
vergezeld is van een verklaring over haar betrouwbaarheid. Zo’n betrouw-
baarheidsverklaring moet gebaseerd zijn op objectieve feiten en wetenschap-
pelijke onderbouwd zijn. Maar aangezien het over een oordeel gaat, zal een
betrouwbaarheidsverklaring steeds, in zekere mate, subjectief zijn. De betrouw-
baarheidsverklaring kan enkel aanvaard worden indien het duidelijk is hoe ze
bekomen werd.

Bronnen van Onzekerheid

Een belangrijke bron van onzekerheid is de onzekerheid op de gemeten groothe-
den: lengte, breedte, dikte, massa, en resonantiefrequenties van de test mon-
sters. Als een gevolg van benaderingen die gemaakt werden bij het opstellen
van de eindige elementen modellen van de test monsters, is er ook een onzek-
erheid op de berekende frequenties. Uit een evaluatiestudie blijkt dat: a) de
onzekerheid afkomstig van het beperkte meetbereik van de meetapparatuur
belangrijker is dan de stochastische variatie van de opgemeten waardes, b) de
onzekerheid afkomstig van de modelleringsfouten is verwaarloosbaar zijn ten
opzichte van de onzekerheid op de gemeten grootheden, c) de discretisatiefout
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van het eindige elementen model levert wel een significante onzekerheid op.

Onzekerheidsroutines

Het onzekerheidsprobleem wordt zowel op een probabilistische als een niet-
probabilistische manier opgelost. De onzekerheidsroutines worden geformuleerd
als een post-processing stap die kan uitgevoerd worden nadat de materiaalpa-
rameters gëıdentificeerd zijn. Om de rekentijd te beperken worden de GNET
vergelijking vervangen door een eerst-orde benadering die bekomen wordt aan
de hand van een Taylor expansie in het werkingspunt van de laatste iteratiestap.

Probabilistische Aanpak

Bij de probabilistische aanpak wordt de onzekerheid op de materiaalparame-
ters bepaald aan de hand van een Monte Carlo simulatie. De onzekerheden
van de inputparameters worden voorgesteld door een distributies met een uni-
forme waarschijnlijkheid tussen een boven en ondergrens. De gesamplede in-
putdistributies worden aan de hand van de gelineariseerde GNET vergelijking
omgezet in outputdistributies. De onzekerheden van de materiaalparameters
kunnen dan geschat worden aan de hand van de bekomen outputdistributies.

Niet-Probabilistische Aanpak

Bij de probabilistische aanpak wordt de onzekerheid op de grootheden voor-
gesteld met onzekerheidsintervallen. Elke onzekerheidsinterval bepaald de on-
der en boven grens van de beschouwde grootheid. De onzekerheidsintervallen
van de materiaalparameters worden bepaald uit de onzekerheidsintervallen van
de inputparameters aan de hand van intervalrekenkunde.

Probabilistische versus Niet-Probabilistische Aanpak

De probabilistische en niet-Probabilistische aanpak zijn complementair en heb-
ben beiden een specifiek toepassingsgebied. De probabilistische aanpak is opti-
maal om de onzekerheid te bepalen van een set van opgemeten materiaalpara-
meters, terwijl de niet-probabilistische aanpak ideaal is om de betrouwbaarheid
of nauwkeurigheid van verschillende testconfiguraties te vergelijken.

Validatie

Een zinvolle validatie van een meettechniek kan alleen op een experimentele
manier uitgevoerd worden. Om de identificatieroutines voor gelaagde mate-
rialen te valideren werden ze toegepast op twee referentiematerialen waarvan
de stijfheden van de lagen gekend waren. Het eerste referentiemateriaal was
een messing-staal bi-metaal, het tweede referentiemateriaal was een met kool-
stofvezel versterkte kunststof. De validatietesten resulteerden in de volgende
conclusies: 1) de trillingsgebaseerde GNETs zijn in staat om de elastische
eigenschappen van de lagen correct identificeren, 2) de mono-oriëntatie rou-
tine resulteerde in een hoge spreiding op de waardes van de gëıdentificeerde
materiaalparameters, 3) de multi-oriëntatie routine is de gebruiksvriendelijk-
ste en betrouwbaarste GNET, en 4) het gebruik van plaatvorimge monsters is
mogelijk maar resulteert meestal in een aantal praktische problemen.
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Toepassingen

De trillingsgebaseerde GNETs werden gebruikt voor de identificatie van een ‘air
plasma sprayed’ en een ‘electrom beam – physical vapour deposited’ coating.
Beide coatings bestonden uit twee lagen: a) een metalische verbindingslaag, en
b) een ceramische toplaag. In beide gevallen kon de GNET de eigenschappen
van de twee lagen identificeren. De bekomen resultaten waren in overeenstem-
ming met de microstructurele karakteristieken van de coatings.

Conclusies

Het is mogelijke om de elastische eigenschappen van de verschillende lagen van
een gelaagd materiaal te identificeren aan de hand van een trillingsgebaseerde
gemengde numeriek-experimentele procedure. De ontwikkelde procedures kun-
nen zowel de eigenschappen van isotrope als van orthotrope materialen bepalen.
Door de trillingsgebaseerde aanpak kunnen de metingen contactloos uitgevo-
erd worden wat het testen van kleine monsters en/of brosse materialen toelaat.
De GNET aanpak zorgt tevens voor een grote flexibiliteit wat het gebruik van
verschillende monstertypes toelaat: balkvormige monsters, plaatvormige mon-
sters, cilindrische monsters, gedeeltelijk gecoate monsters, etc.
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1
Introduction

This chapter introduces the thesis by situating the subject, high-
lighting the personal contributions and clarifying the structure of
the text.



2 1.1. MATERIAL IDENTIFICATION

1.1. Material Identification

Numerical simulations have become an indispensable tool in the process that
leads to the development of an engineering structure. Although these simula-
tions have replaced a substantial amount of experimental tests, they have not
rendered testing obsolete. A successful simulation requires an accurate knowl-
edge of the material parameters that are used in the numerical model. These
parameters can only be obtained with an actual experiment.
To improve the performance, durability or efficiency of mechanical equipment,
material scientists are continuously developing new materials. Unfortunately,
the mechanical behaviour of these novel materials is becoming increasingly
more complex. The description of their behaviour thus requires more elabo-
rate models that use a larger number of model parameters. All these material
parameters have to be measured in order to use the simulation models in a
reliable way. However, the knowledge of these parameters is not only impor-
tant for mechanical simulations. Since these material parameters represent the
true behaviour of the material, they can also be used by material scientists to
evaluate and possibly improve the performance of newly developed materials.
Layered materials is one class of new materials that is becoming increasingly
important for the production of high performance components. During design
calculations, their stiffness properties are crucial for the assessment of stress
fields. Numerous analysis techniques to identify the elastic properties of ma-
terials exist, however in the case of layered materials, these techniques usually
yield properties that are ‘homogenised’ over the thickness of the material. This
thesis focuses on the development of identification procedures to identify the
elastic parameters of the constituent layers of a layered material.

1.1.1. Vibration-Based Material Identification

Traditionally, elastic material parameters are measured with quasi static tests
such as tensile tests or four point bending tests. Alternatively, elastic mate-
rial parameters can also be determined with vibration-based methods. With
the vibration-based approach, the elastic properties can be determined in a
contactless way, which is a major advantage for small test samples or brittle
materials. Other advantages of the vibration-based approach are the accuracy,
the simplicity and affordability of the test set-up, the short time required to
perform a measurement, etc.
The vibration-based approach is founded on the fundamental relation that ex-
ists between the elastic material properties of a structure and its vibratory
behaviour. The first application of the vibration-based approach was reported
by Förster [1] in 1937. Förster used the Euler beam theory to link the sample’s
elastic modulus to the eigenfrequency of the fundamental flexural mode. In
1945 Pickett [2] used Goens’ [7] approximate solution of the Timoshenko beam
equations [8] to establish a more accurate relation between the elastic mod-
ulus and the fundamental transverse flexural frequency of a vibrating prism
or cylinder. In 1961, Spinner and Teft [3] extended Pickett’s work with tor-
sional frequencies, enabling the identification of the shear modulus. The work
of Spinner and Teft formed the base of the ASTM resonant beam test pro-
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cedure [4], which standardised material testing based on analytical vibration
models. However, the use of analytical formulas to describe the vibratory be-
haviour of test specimens is a major obstacle for extending the vibration-based
methods to more complex materials.

1.1.2. Layered Material Identification

There is an extensive amount of literature on the identification of the elastic
properties of layered materials. Unfortunately, almost all the articles present
procedures that either identify the ‘homogenised’ properties of the laminate,
or consider relations between the properties of the various layers, reducing
the problem to the identification of the properties of a single material. The
following four articles, discussing a genuine layered identification technique,
were found.

Article 1: “Young’s modulus of bioactive glass coated oral implants: poros-
ity corrected bulk modulus versus resonance frequency analysis” [6] — In
this article the properties of a bioactive glass (BAG) coating are identified from
a set of cylindrical specimens. In the considered article, the coating properties
were identified using a pure substrate and a coated specimen.

Pure substrate Coated substrate

Figure 1.1: The specimens used to identify the Young’s modulus of the BAG
coating.

The elastic properties of the BAG coating were measured using the following
approach. A number of BAG coated cylindrical test specimens were produced.
These rods were regarded as composite cylindrical beams, made up of homo-
geneous, isotropic materials. The overall Young’s modulus of these bars was
identified from the resonant frequency of the fundamental flexural vibration
mode using the ASTM [4] standard1. The Young’s modulus of the substrate
was identified in an identical way from the fundamental flexural frequency of
the same specimen after removing the coating. The coating layer was removed
by stressing the rotating sample with a point load. In this way the coating
totally cracked up and subsequently spalled of the substrate without changing
the properties of the substrate.
Eventually, the elastic modulus of the BAG coating was calculated from the
overall stiffness of the coated specimen and the elastic modulus of the substrate
material. The overall stiffness of the coated specimen was decomposed by
stating that the bending stiffness of the coated beam can be expressed as the

1Appendix D provides the identification formulas.



4 1.1. MATERIAL IDENTIFICATION

sum of the bending stiffness of the substrate and the bending stiffness of the
coating. Since the bending stiffness of the substrate and coated rod are known,
this relation provides the bending stiffness of the coating. Finally, the Young’s
modulus of the coating material is found by dividing the bending stiffness of
the coating by its moment of inertia.
The presented procedure is a genuine multi-layered identification technique and
has the following qualities:

- It is a vibration-based identification procedure that can identify the elastic
modulus of layered materials with isotropic layers.

- The procedure has been successfully applied to identify the Young’s mod-
ulus of a coating.

- Although the method is presented for cylindrical rods, the procedure can
easily be adapted to estimate the elastic properties of beam-shaped sam-
ples with a rectangular cross-section.

Article 2: “An inverse method for determining material parameters of
a multi-layer medium by boundary element method” [9] — This article
presents a mixed numerical-experimental approach2 to determine the elastic
moduli of the layers using indentation measurements. In the experimental
phase, a disc-shaped sample of the layered material is indented with an ax-
isymmetric indenter, while the applied force and resulting deformation are
measured. The experiment is modelled with a boundary element model that
considers the layers to be elastically isotropic and to have a uniform thickness.
The procedure identifies the elastic modulus of the layers together with the
layer thicknesses. In theory, there is no limit on the number of layers that can
be identified. Also note that this procedure is able to identify the properties of
layers with a thickness of a few micrometers.

Figure 1.2: A sample of a three-layer material
indented by a cylindrical body.

The article presents two theoretical examples, it does not present any actual
test cases. In these theoretical examples, the indentation experiments are sim-
ulated with a boundary element model. The simulation results are used as
experimental data to identify the layer properties. The first example considers
a material with two layers, the second example considers a material with four
layers. In both cases, there is an difference between the correct and identified
properties. For the first and second example, an average difference of 2.0% and
2.6% respectively is observed. The authors explain the difference by indicat-
ing that the identification problem is ill-conditioned. Another consequence of

2A general introduction about mixed numerical-experimental techniques is presented in
section 1.2.
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this ill-conditioning is that the procedure does not yield a unique solution; the
obtained solution depends on the starting values. The authors indicate that
the ‘correct’ solution is only found, if the starting values were close enough to
the correct values, and if the search space of the identification procedure was
restricted by a set of constraints.

Article 3: “Measurement of coatings’ elastic properties by mechanical
methods: Part 1. Considerations on experimental errors” [10] — The
authors present a four point bending technique to measure the elastic proper-
ties of isotropic coatings. They introduce two analytical models to describe a
pure bending phenomenon in layered beam- and plate-shaped samples. From
these model equations, they derive a set of analytical formulas to calculate the
elastic modulus and Poisson’s ratio of the outermost coating layer. With these
equations, the layer properties can be derived from a sample set that com-
prises specimens with an increasing number of layers, i.e. a test is performed
after every layer deposition. The properties of the last deposited layer can be
deduced on the basis of the results gained with the previous tests that were per-
formed on samples with fewer layers. The presented technique considers all the
layer materials to be isotropic. An estimate of the elastic modulus is obtained
from beam-shaped samples, an estimate of the Poisson’s ratio is obtained from
plate-shaped samples.
Figure 1.3 presents the four variations of the four point bending test considered
in the article; in each plot, only the measured quantities are indicated. Method
1 uses the strain on the surface of both the substrate (εs) and the coating
(εc), method 2 uses the applied load (P ) and the strain on the coating surface,
method 3 uses the applied load and the strain on the substrate surface, and
method 4 uses the applied load and the resulting displacement of the midsection
of the specimen (w). Note that only methods 2 and 4 can be applied with
symmetrically coated specimens.

εc

εs

(a) Method 1

PP

εc

(b) Method 2

PP

εs

(c) Method 3

PP

w

(d) Method 4

Figure 1.3: The four methods presented by [10].
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Article 4: “Measurement of coatings’ elastic properties by mechanical
methods: Part 2. Application to thermal barrier coatings” [11] — In this
article, the methods that were introduced in part one [10] are applied to identify
the properties of thermal barrier coatings (TBCs)3 consisting of two separate
layers: a metallic bond coat (BC) and a ceramic top coat (TC). The properties
are identified using five different samples types: pure substrate samples, sam-
ples coated with BC on one side, samples coated with BC both sides, samples
coated with BC and TC on one side, samples coated with BC and TC on both
sides. To enable the identification of the elastic modulus and Poisson’s ratio of
the coatings, both beam-shaped and plate-shaped samples were tested.
With this sample set, methods 1, 2 and 4 can be evaluated and compared. All
the approaches managed to identify the elastic properties of both the bond coat
and the top coat. This procedure is thus a genuine multi-layered identification
technique and has the following qualities:

- The procedure can identify the elastic modulus and Poisson’s ratio of
layered materials with isotropic layers.

- Method 1 does not derive the layer stiffness from the overall bending
stiffness of the beam. Through this, method 1 is less sensitive to errors on
the layer thicknesses than methods 2, 3 and 4.

- It is possible to measure the applied load and the resulting midsection
displacement in a furnace. Therefore, it is possible to identify the layer
properties as a function of temperature with method 4. The feasibility of
high temperature testing is proven in [11].

1.1.3. Conclusions

The procedures presented in [6, 10] are genuine layered identification proce-
dures, that have proven to work under testing conditions. Although these
techniques worked fine for the considered applications, they have a number of
important limitations:

- Both techniques are limited to isotropic materials, it is impossible to iden-
tify the elastic properties of orthotropic materials.

- The technique of [10] is limited to beam- and plate-shaped samples. The
use of cylindrical or disc-shaped samples would require the derivation of a
new set of analytical equations. The approach of [6] is limited to cylindrical
and beam-shaped specimens.

- Both techniques require a particular set of test samples: a sample set that
comprises specimens that have an increasing number of layers. It is not
possible to identify the layer properties with a single specimen.

- The approach of [6] is only applicable with samples that have a symmetric
layer configuration.

- It is not possible to identify the properties of specimens that are partially
coated.

- The procedure of [10] not contactless. Porous materials might be crushed
in the vicinity of the support or load points, brittle materials might crack.

3The introduction of the third test-case discussed in chapter 9 provides some background
information about thermal barrier coatings.
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Note that nearly all the limitations are related to the use of analytical for-
mulas to describe the mechanical behaviour of the sample. These limitations
could easily be overcome by using finite element models. A contactless, non-
destructive procedure can be obtained by using a vibration-based approach.
So, the vibration-based mixed numerical-experimental approach appears to be
the most promising concept for the development of powerful identification tech-
niques for layered materials.

1.2. Mixed Numerical-Experimental Techniques

1.2.1. Introduction

Mixed numerical-experimental techniques (MNETs) were introduced about two
decades ago. In those twenty years MNETs have proven to be very versatile
and flexible tools for the identification of material parameters. MNET-based
identification routines have been introduced in a wide range of disciplines to
estimate a broad variety of material parameters, e.g. in civil engineering to es-
timate the permeability [12] or elasticity [13] of soil, in electrical engineering to
identify the piezoelectric properties of materials [14], in material engineering to
quantify the porosity [15] or to determine the permeability of textiles for fibre
reinforced plastics [16], in mechanical engineering to identify the thermal con-
ductivity [17], acoustic [18], damping [19, 20] and plastic [21, 22] properties of
materials, and in biomedical engineering to estimate the mechanical properties
of skin [23] or liver tissue [24]. In those fields MNETs have been applied to
identify material properties using specimens ranging from 50 µm thick struc-
tures [25] to real sized flood-control dams [26].
In the field of mechanical engineering, several authors have presented techniques
to identify the elastic properties of materials. For this purpose, MNETs have
been proposed to characterise materials using tensile tests [27], bending tests
[28], shear tests [29], compression tests [30], indentation tests [31], elastic waves
[32,33], stress waves [34], and resonant frequencies [35–37]. However, this thesis
will only consider the resonant-based approach, since it is a very attractive
option from both an experimental and a numerical point of view.
Resonant based testing is standardised by an ASTM standard [4] which presents
a number of analytical formulas to estimate the elastic material properties of
homogeneous, isotropic materials. The use of analytical formulas to describe
the vibratory behaviour of test specimens is, however, the main obstacle for
extending the vibration-based methods to more complex materials. In 1986,
Sol [5] showed that it is possible to replace the analytical formulas by special
purpose finite element models. The MNET he presented identifies the four
in-plane engineering constants of an orthotropic material, i.e. E1, E2, G12 and
ν12, from the resonant frequencies of the fundamental flexural modes of two
beam-shaped specimens, and the first three resonant frequencies of a plate-
shaped specimen. Meanwhile, several authors introduced related approaches
for the identification of elastic constants of orthotropic materials using thin
plate specimens, [38–42], or have extended the technique to thick plates [43,44].
In the last decade several researchers have developed MNET-based procedures
to identify the elastic properties of layered materials. In 1993 Soares [45] intro-
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duced a vibration-based MNET to identify the elastic properties of laminated
composites from a number of resonant frequencies of a plate-shaped specimen.
In 1997 Cunha [46, 47] proposed a similar technique to identify the stiffness
coefficients of laminated composite plates. In 2000 he extended this procedure
for the characterisation of the elastic properties of laminated composite tubes.
In 2004 Cugnoni [48, 49] presented a vibration-based MNET to identify the
overall elastic properties of thick sandwich panels. In [50] Rikards presented
an interesting overview of MNET-based routines for the characterisation of
layered materials. His overview clearly indicates that the routines that have
been introduced so far have one major limitation: they only identify the aver-
age properties of the material, they do not provide any information about the
properties of the individual layers.

1.2.2. The MNET Approach

Some physical properties are difficult or even impossible to measure in a direct
way. Sometimes, the physical property can be measured with an indirect mea-
surement procedure. Instead of measuring the property of interest, indirect
procedures measure a number of related quantities and derive the unknown
property from the experimental values of these quantities.
Traditional indirect measurement techniques use analytical expressions to re-
late the physical property of interest to the measured quantities. This ap-
proach can only be used when there is a simple relation between the measured
quantities and the physical property of interest. If this relation becomes too
complex to be expressed analytically, the physical properties of interest have to
be related to the measured quantities by means of a numerical model, and the
properties of interest have to be identified by a mixed numerical-experimental
technique. Figure 1.4 illustrates the general concept of the mixed numerical-
experimental approach.

Applied inputs Resulting responses
Experiment

Test set-up

Simulation
Numerical model

Physical properties

Figure 1.4: The general concept of mixed numerical-experimental techniques.

Numerical models are usually formulated in such a way that they compute
the response of a system using the applied inputs and system properties. The
problem of determining the response from the input and system properties is
called the direct problem and is illustrated in figure 1.5.
However, the direct problem is not the problem that has to be solved in a mixed
numerical-experimental technique – figure 1.4. In an MNET, a number of model
parameters have to be derived from the system’s response to a particular input.
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Applied inputs

Model parameters
ResponsesNumerical model

Figure 1.5: The direct problem.

This problem is called the inverse problem and is sketched in figure 1.6. Most
numerical models can not be reformulated in the form that complies with the
inverse problem. The solution of the inverse problem has to be found in an
iterative way by ‘fine-tuning’ the model parameters in such a way that the
obtained response equals the measured response.PSfrag

Applied inputs

Model parameters
ResponsesNumerical model

Figure 1.6: The inverse problem.

Incorporating the concept of inverse problems into the scheme of figure 1.4
provides the general MNET flowchart of figure 1.7. In the first phase, an
experiment is performed and the applied inputs and resulting responses are
recorded. In a second phase, a numerical model of this experiment is con-
structed. The responses are computed with this simulation model using a set
of trial values of the unknown model parameters, i.e. the physical properties
that have to be identified. The simulation responses are compared with the
experimental responses and an improved set of model parameters is obtained
by minimising the response differences. The improved model parameters are

PSfrag

Applied inputs

Experiment
Test set-up

Simulation
Numerical model

Measured responses Calculated responses

Optimisation
Minimise response differences

Identified properties
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Figure 1.7: The general flowchart of a mixed numerical-experimental tech-
nique (MNET).
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inserted into the numerical model and a new iteration cycle is performed. The
iterative procedure is aborted once the solution has converged, and the model
parameters can be extracted from the database of the numerical model. Note
that vibration-based identification routines use resonant frequencies and mode
shapes as response quantities. For linear elastic material behaviour, resonant
frequencies and mode shapes do not depend on the excitation, which implies
that vibration-based MNETs do not require to record the applied input4.
The MNET approach might look like a quite complicated concept to measure
physical parameters. However, if looked at from a modelling point of view, it is
actually a very logical approach. For mechanical engineering applications, the
identified material parameters will eventually be used in numerical simulations.
An MNET routine will use this simulation code to identify the unknown values
of the model parameters. It therefore creates a perfect synergy between the
worlds of modelling and testing, since the numerical simulation code is used to
both determine the values of the model parameters and predict the behaviour
of a real structure. Note that the MNET approach is a generic concept allowing
the identification of any parameter that is used in a numerical simulation code.
MNETs also have a number of other interesting advantages over traditional
measurement techniques. For example, it is possible to extract more than one
physical parameter from a single experiment or to extract a set of parameters
from a combination of different experiments. Unlike conventional measurement
approaches, MNETs can also handle more complex types of experimental data
and this might become an important issue in the future. Due to recent techno-
logical advances, optical measurement devices like scanning laser vibrometers
and CCD cameras are becoming more and more affordable. Although these
systems provide a wealth of information, the information is only becoming use-
ful when there are techniques to process the measured data in an efficient way.
MNETs could play an important role in this process.

1.2.3. MNETs versus Finite Element Model-Updating

The reader with a background in mechanical engineering might have the im-
pression that mixed numerical-experimental techniques is just another name for
finite element model-updating. Both techniques are based on the same math-
ematical tools: numerical modelling, correlation analysis, sensitivity analysis
and optimisation theory. Despite these important similarities, there is a sig-
nificant difference: the two methods differentiate themselves from each other
based on their main goal. To be more precise, model-updating focuses on the
mathematical model, while MNETs focus on the model parameters. All other
differences between model-updating and MNETs are a consequence of this fun-
damental difference.
The quality of a numerical model is of course determined by its capability to
predict the responses of the real structure. However, every mathematical model
is based on a number of assumptions and has therefore a limited accuracy. In
the case of finite element models, the inaccuracy of the model can be caused by

4As long as the characteristics of the input spectrum are known and allow the estimation
of the relevant resonant frequencies and/or mode shapes.
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approximating the geometry of the considered structure with a limited number
of elements, the type of elements and element formulation, uncertainties on the
material properties or any other simplification made during the construction
of the numerical model. Because of these assumptions and simplifications,
the results of the numerical model will not exactly match the experimental
responses of the real structure. Model-updating aims to improve the reliability
of a mathematical model by fine-tuning a number of model parameters, in
order to obtain an optimal correlation between the numerical results and a set
of experimental data.
An MNET aims to identify the values of a set of physical parameters by min-
imising the differences between a data set measured during an experiment and
the results of a numerical simulation of this experiment. Like model-updating
routines, MNETs minimise the differences between experimental and numerical
results by fine-tuning a set of model parameters. However, the goal of MNETs
is not to compensate the shortcomings of the model, but to measure a set of
physical properties. This leads to the following practical differences between
model-updating and MNETs:
Accuracy of the model — In model-updating, the model parameters are fine-
tuned to improve the reliability of the model. In some cases, the simulation
model was even deliberately simplified, e.g. to obtain a shorter computation
time. This is not a serious problem, since the optimised parameter values can
compensate the inaccuracies of the model. However, the optimised parameter
values will only compensate the inaccuracies of that particular model. The
optimised parameters are thus model-dependent and meaningless, if they are
not used in combination with the associated model. MNETs aim at identifying
the values of physical parameters, which are by definition model-independent.
The inaccuracy of the simulation model of a certain MNET will have a negative
effect on the quality of the identified parameters. Therefore, the mathematical
model of any MNET should be as accurate as possible. This can only be
achieved by combining a rather simple experiment with a detailed simulation
model.
The choice of the parameters — The proper selection of the updating para-
meters is a key step for the successful updating of a finite element model. If
the selected model parameters are indeed the ones with incorrect values, the
procedure should converge and yield an updated model that is reliable. On
the contrary, if the model parameters with incorrect values are not selected,
the updating process might not converge or might yield a model that is not
very reliable and/or contains parameters with unrealistic values [51]. Usually,
the selection of the proper updating parameters is a difficult process, however
in the case of an MNET this process is very straightforward. The updating
parameters are simply the ones that represent the physical quantities that have
to be identified.
The uniqueness of the solution — Updating problems can have multiple solu-
tions that result in an equivalent correlation between model and experiment. In
the case of model-updating, this is not a problem since the goal is to have – at
least one – reliable model. On the contrary, in the case of an MNET, multiple
solutions pose a serious problem. MNETs identify physical properties, which
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of course have a unique value. If there are multiple solutions that result in an
equivalent correlation, it is impossible to determine which solution represents
the correct physical values. So, if an MNET results in multiple solutions, it
has to be redesigned in such a way that it provides only one solution.

1.3. Focus of the Thesis

The main objective of this thesis was to develop a vibration-based identifica-
tion procedure to determine the elastic properties of the individual layers of
layered materials. In order to achieve this objective, a lot of intermediate steps
had to be taken, some of which provided better insight in vibration-based ma-
terial identification or resulted in new identification procedures for non-layered
materials. More specifically, the original contributions of this thesis are:

- The identification procedure that was introduced in [5] is a vibration-based
MNET that can identify the elastic properties of orthotropic materials. It
requires the resonant frequencies of the fundamental flexural vibration
mode of two beam-shaped specimens and the resonant frequencies of the
three lowest vibration modes of a plate-shaped specimen. The procedure
was modified in such a way that the elastic properties can now be identified
from the resonant frequencies of the first five vibrations modes of the plate-
shaped specimen. The two beam-shaped specimens are no longer required.

- The development of a new MNET procedure that can identify the elas-
tic properties of orthotropic materials from the resonant frequencies of
the fundamental flexural and torsional vibration modes of a set of beam-
shaped specimens each of which represents a different material orientation.
Since this technique only requires beam-shaped specimens, it allows the
characterisation of orthotropic materials at high temperatures, in a fur-
nace.

- The introduction of three vibration-based MNETs for the identification of
the elastic properties of layered materials. The developed techniques can
identify the elastic properties of both isotropic and orthotropic layers.

- The text presents a comparison of the various vibration-based identifica-
tion techniques for both homogeneous and layered materials. All these
techniques are critically evaluated using a number of numerical and ex-
perimental validation tests.

- The introduction of a probabilistic and a non-probabilistic approach to
handle the uncertainties in vibration-based MNETs. The presented un-
certainty analysis algorithms estimate the uncertainty on the identified
elastic parameters from the uncertainties on the experimentally measured
quantities in a computationally efficient way.

1.4. Structure of the Thesis

This thesis comprises three main parts. The first part introduces a number of
mathematical tools, the second part uses these mathematical tools to build a
series of identification procedures, and the last part provides an experimental
validation together with a number of applications of the presented identification
routines. The text is organised in nine chapters.
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Chapter 1 — Introduces the thesis by situating the subject, highlighting the
personal contributions and clarifying the structure of the text.
Chapter 2 — Discusses the basics of the theory of linear elasticity. It intro-
duces the isotropic and orthotropic material model and presents the thermo-
dynamic restrictions on the parameters of these two models.
Chapter 3 — The first part of this chapter discusses the basics of the finite
element method for normal modes analysis. The second part of this chapter
introduces sensitivity analysis and gives a detailed discussion on its use in
vibration-based material identification routines.
Chapter 4 — Presents an overview of the use of optimisation theory in MNETs
together with the general framework to solve the optimisation problem of a
vibration-based MNET.
Chapter 5 — Introduces the classical lamination theory and discusses the
vibratory behaviour of layered materials.
Chapter 6 — Presents and discusses the vibration-based identification routines
for both homogeneous and layered materials.
Chapter 7 — This chapter introduces the concept of measurement uncertainty
and presents a probabilistic and a non-probabilistic approach to handle uncer-
tainty with MNET-based identification routines.
Chapter 8 — Presents the validation tests performed on two different reference
materials in order to validate the MNET-based procedures of chapter 6 in an
experimental way.
Chapter 9 — Presents a number of applications of layered material identifi-
cation, using the MNET-based procedures introduced in chapter 6, to identify
the elastic properties of different types of ceramic coatings.
Chapter 10 — Summarises the conclusions and provides some suggestions for
future research.
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2
Linear Elasticity

This chapter provides a general overview of the theory of linear
elasticity and presents a detailed discussion of both the isotropic
and orthotropic material model. The text of this chapter is based
on the material presented in references [52] and [53].
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2.1. The Generalized Hooke’s Law

When linear elastic behaviour is assumed, the stress-strain relation of a ma-
terial is given by the generalized Hooke’s law. In matrix form, Hooke’s law is
expressed as

{σ} = [C]{ε} (2.1)

in which the vectors {σ} and {ε} group the stress and strain components,
respectively. Since both {σ} and {ε} are elements of R6, the stiffness matrix
[C] has to be an element of R6×6. This means that 36 parameters are needed to
describe a material’s stress-strain relation. However, it can be shown that the
stiffness matrix has to be symmetric [52], reducing the number of independent
constants to 21. The most general expression within the framework of linear
elasticity is thus given by

σ1

σ2

σ3

τ23

τ31

τ12


=


C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66





ε1
ε2
ε3
γ23

γ31

γ12


(2.2)

in which σi and εi are the normal stress and strain component in the i-direction,
while τij and γij are the shear stress and shear strain in the ij-plane. Under
the assumption of small deformations, the strain vector {ε} is related to the
displacement vector {u} as

{ε} = [∂]{u} (2.3)

or



ε1
ε2
ε3
γ23

γ31

γ12


=



∂

∂x
0 0 0

∂

∂z

∂

∂y

0
∂

∂y
0

∂

∂z
0

∂

∂x

0 0
∂

∂z

∂

∂y

∂

∂x
0



T

u
v
w

 (2.4)

where u, v, and w are the displacement components in the x-, y-, and z-
direction, respectively.

Equation (2.2) models an anisotropic material which has no planes of symmetry
for its material properties. Such a material is called a triclinic material. If
any material symmetry exists, the number of independent properties decreases
further, since the material symmetry induces relations between the various
stiffness coefficients. For a material with a single symmetry plane, the stress-
strain relation reduces to
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σ1

σ2

σ3

τ23

τ31

τ12


=


C11 C12 C13 0 0 C16

C12 C22 C23 0 0 C26

C13 C23 C33 0 0 C36

0 0 0 C44 C45 0
0 0 0 C45 C55 0
C16 C26 C36 0 0 C66





ε1
ε2
ε3
γ23

γ31

γ12


(2.5)

in case the 12-plane is the symmetry plane. Materials with one symmetry
plane are called monoclinic and can be described with 13 independent elastic
constants. Note that the structure of the stiffness matrix will only comply with
the structure presented in (2.5), when the coordinate system used to define the
stress and strain vectors is aligned with the symmetry plane of the material
properties. When an arbitrary coordinate system is chosen, the stiffness matrix
will contain 36 non-zero elements, of which only 13 are independent.
The existence of two orthogonal symmetry planes in a material automatically
implies the presence of a third symmetry plane, orthogonal to the first two [53].
A material with three orthogonal symmetry planes is called orthotropic. If the
used coordinate system is aligned with the principal material directions, i.e.
the directions parallel to the intersections of the three orthogonal symmetry
planes, the stress-strain relation becomes

σ1

σ2

σ3

τ23

τ31

τ12


=


C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66





ε1
ε2
ε3
γ23

γ31

γ12


(2.6)

The elastic behaviour of an orthotropic material can be described with 9 inde-
pendent constants. Equation (2.6) shows that there is no interaction between
the normal stresses and the shear strains, between the shear stresses and nor-
mal strains, and between the shear stresses and shear strains in different planes.
Also note that these interactions do exist, when the coordinate system is not
aligned parallel to the symmetry planes. In this situation, the stiffness matrix
will once again have 36 non-zero coefficients.
If the material has an infinite number of symmetry planes, the material is said
to be isotropic. In the case of an isotropic material, the stress-strain relation
simplifies to



σ1

σ2

σ3

τ23
τ31
τ12


=



C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0

0 0 0
C11 − C12

2
0 0

0 0 0 0
C11 − C12

2
0

0 0 0 0 0
C11 − C12

2





ε1
ε2
ε3
γ23

γ31

γ12


(2.7)

Equation (2.7) indicates that an isotropic material is defined by only 2 inde-
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pendent constants. Since any arbitrary plane is a symmetry plane, the choice
of the coordinate system does not change the values of the stiffness constants,
nor the number of non-zero elements of the stiffness matrix.
The generalized Hooke’s law can also be written in terms of compliances, re-
lating the strains to the stresses as

{ε} = [S]{σ} with [S] = [C]−1 (2.8)

The matrix [S] is called the compliance matrix. It can be shown that the
compliance matrix has the same structure as the stiffness matrix [53]. The
compliance matrices of triclinic, monoclinic, orthotropic, and isotropic mate-
rials can thus be obtained by replacing Cij with Sij in equations (2.2) and
(2.5–2.7).
To conclude, it must be emphasised that the number of independent constants
is a very important quantity from an identification point of view, since it de-
termines the number of parameters that will have to be identified in order to
fully describe the constitutive behaviour of the material. Also note that the
behaviour of a material is controlled by the number of non-zero coefficients
and not as much by the number of independent constants. For example: an
on-axis orthotropic material and an isotropic material will qualitatively behave
the same, since both materials have 12 non-zero stiffness coefficients. Table 2.1
summarizes the properties of the different material classes.

Table 2.1: Summary of the material symmetries [53].

Symmetry type Independent Non-zero constants
constants On-axis Off-axis

Triclinic 21 36 36
Monoclinic 13 20 36
Orthotropic 9 12 36
Isotropic 2 12 12

2.2. Orthotropic Materials

2.2.1. Engineering Constants

In practice, elastic material properties are usually characterized with a set
of engineering constants like generalized Young’s moduli, shear moduli and
Poisson’s ratios. For an orthotropic material, there are twelve engineering
constants. The Young’s modulus in the i-direction is defined as

Ei =
σi

εi
, i = 1, 2, 3 (2.9)

considering a stress state where σi is the only non-zero stress component.
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The shear modulus in the ij-plane is defined as

Gij =
τij
γij

, ij = 12, 23, 31 (2.10)

considering a stress state where τij is the only non-zero stress component.
The Poisson’s ratio for transverse strain in the j-direction when the material
is stressed in the i-direction is defined as

νij = −εj

εi
, ij = 12, 13, 21, 23, 31, 32 (2.11)

considering a stress state where σi is the only non-zero stress component.
The definitions of the engineering constants originate from the traditional test
methods used to characterise the elastic behaviour of materials such as uni-axial
tension or pure shear tests [52]. These traditional tests are usually performed
with a controlled strain or displacement, while the required force is measured.
This obviously explains the choice of uni-axial stress conditions in the defini-
tions of the engineering constants.
Since the engineering constants are defined for uni-axial stress conditions, it is
much easier to express them in terms of compliances than in terms of stiffnesses.
The combination of the definitions in (2.9–2.11) with the strain-stress relations
of an orthotropic material result in the expressions of (2.12–2.14), which relate
the engineering constants to the compliances. Remember that the compliance
matrix of an orthotropic material has the same structure as the stiffness matrix
of (2.6).

E1 =
1
S11

E2 =
1
S22

E3 =
1
S33

(2.12)

G23 =
1
S44

G31 =
1
S55

G12 =
1
S66

(2.13)

ν12 = −S12

S11

ν21 = −S12

S22

ν23 = −S23

S22

ν32 = −S23

S33

ν31 = −S13

S33

ν13 = −S13

S11

(2.14)

The expressions of equation (2.14) show that

νij

Sjj
=
νji

Sii
(2.15)

which means that there are only three independent Poisson’s ratios. In terms
of engineering constants, the Poisson’s ratios are related as follows

νij

Ei
=
νji

Ej
(2.16)

2.2.2. Elastic Properties for an Arbitrary Orientation

The properties discussed in the previous section are defined in the directions of
the principal material axes. These on-axis properties describe the behaviour of
the material when subjected to a stress field that is aligned with the principal
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material axes. But as already mentioned, the behaviour of a material can vary
with the orientation of the considered load. The off-axis properties describe
the material behaviour when subjected to a stress field with an arbitrary ori-
entation. The goal of this section is to establish the link between the on- and
off-axis properties.
Consider a load with an arbitrary orientation and a local axis system x-y-z
which is aligned to the principal directions of this load. In this local axis
system, the stress-strain relation can be expressed as

{ε} = [S]{σ} (2.17)

where the overline indicates that the quantities are expressed in local coordi-
nates. The transformed compliance matrix [S] contains the off-axis properties.
The local coordinate system can be obtained from the global system, i.e. the
1-2-3 system, by applying three successive rotations. These rotations are math-
ematically represented by the transformation matrix

[T ] =

[
T11 | T12

T21 | T22

]
(2.18)

where

[T11] =

a2
11 a2

12 a2
13

a2
21 a2

22 a2
23

a2
31 a2

32 a2
33


[T12] =

2a11a12 2a12a13 2a13a11

2a21a22 2a22a23 2a23a21

2a31a32 2a32a33 2a33a31


[T21] =

a11a21 a12a22 a13a23

a21a31 a22a32 a23a33

a31a11 a32a12 a33a13


[T22] =

a11a22 + a12a21 a12a23 + a13a22 a13a21 + a11a23

a21a32 + a22a31 a22a33 + a23a32 a23a31 + a21a33

a31a12 + a32a11 a32a13 + a33a12 a33a11 + a31a13


in which aij represents the cosine of the angle between the final position of the
i-axis, and the initial position of the j-axis. The on- and off-axis stress vectors
are thus related as 

σx

σy

σz

τyz

τzx

τxy


= [T ]



σ1

σ2

σ3

τ23
τ31
τ12


(2.19)

or in contracted notation
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{σ} = [T ]{σ} (2.20)

The on-axis and off-axis strains are related as

εx

εy

εz
1
2γyz

1
2γzx

1
2γxy


= [T ]



ε1
ε2
ε3

1
2γ23

1
2γ31

1
2γ12


(2.21)

In order to express this relation in terms of ‘classical’ strain vectors as in (2.2),
Reuter [54] introduced a weighting matrix [R].

[R] =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2

 (2.22)

By using the Reuter matrix, the strain relation (2.21) can be contracted as

{ε} = [R][T ][R]−1{ε} (2.23)

In the global axis system, the strain and stress vectors are related as (2.8).

{ε} = [S]{σ} (2.24)

This on-axis strain-stress relation can be expressed in term of off-axis strain
and stress components by means of the transformation expressions (2.20) and
(2.23).

{ε} = [R][T ][R]−1[S][T ]−1{σ} (2.25)

Equation (2.25) expresses the off-axis strain-stress relation (2.17). The on- and
off-axis compliances are thus related as

[S] = [R][T ][R]−1[S][T ]−1 (2.26)

Note that the elaboration of the right-hand side of (2.26) will show that the
off-axis compliance matrix is symmetrical.

2.3. Isotropic Materials

In case of isotropic material behaviour, the engineering constants are related
to the compliances as

E1 = E2 = E3 =
1
S11

(2.27)
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G12 = G23 = G13 =
1

2(S11 − S12)
(2.28)

ν12 =

ν21 =

ν23 =

ν32 =

ν31 = −S12

S11

ν13 = −S12

S11

(2.29)

or simplified

E =
1
S11

, G =
1

2(S11 − S12)
, ν = −S12

S11
(2.30)

Elimination of the compliances S11 and S12 from the equations of (2.30) pro-
vides the following relation between the three engineering constants of an
isotropic material

G =
E

2(1 + ν)
(2.31)

Note that for isotropic materials, every plane is a plane of symmetry. Therefore,
the properties of isotropic materials cannot vary in function of the material
orientation.

2.4. Two-Dimensional Stress Analysis

For plate-like structures, the stress analysis is usually carried out under the
Kirchhoff assumptions1. For a structure parallel to the 12-plane, the Kirchhoff
assumptions result in plane stress state where

σ3 = 0, τ23 = 0, τ31 = 0 (2.32)

Furthermore, in the case of plate-like objects, the normal strain in the trans-
verse direction, ε3, is sufficiently small so that it can be ignored.

2.4.1. Orthotropic Materials

Accepting the Kirchhoff assumptions, the general strain-stress relation for or-
thotropic materials reduces to the following in-plane strain-stress relation ε1

ε2
γ12

 =

S11 S12 0
S12 S22 0
0 0 S66

 σ1

σ2

τ12

 (2.33)

The in-plane stress-strain relation (2.34) is obtained by inverting the reduced
strain-stress relation (2.33) σ1

σ2

τ12

 =

Q11Q12 0
Q12Q22 0
0 0 Q66

 ε1
ε2
γ12

 (2.34)

1More information on the Kirchhoff assumptions can be found in chapter 5.
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The reduced stiffness coefficients Qij are related to the compliances as follows

Q11 =
S22

S11S22 − S2
12

, Q12 = − S12

S11S22 − S2
12

,

Q22 =
S11

S11S22 − S2
12

, S66 =
1
S66

(2.35)

or to the engineering constants as

Q11 =
E1

1− ν12ν21
, Q12 =

ν12E2

1− ν12ν21
,

Q22 =
E2

1− ν12ν21
, Q66 = G12

(2.36)

Remember that, according to equation (2.16)

ν12

E1
=
ν21

E2
(2.37)

which implies that, under the Kirchhoff assumptions, the elastic behaviour of an
orthotropic material can be fully described by four instead of nine independent
engineering constants, i.e. E1, E2, G12 and ν12. The off-axis properties are still
obtained with (2.26), but the rotation matrix (2.18) and Reuter matrix (2.22)
reduce to

[T ] =

 cos2θ sin2θ −2 sin θ cos θ
sin2θ cos2θ 2 sin θ cos θ

sin θ cos θ − sin θ cos θ cos2θ − sin2θ

, [R] =

1 0 0
0 1 0
0 0 2

 (2.38)

where θ is the angle between the x- and 1-axis, as shown in figure 2.1.

x

y

1

2

θ

Figure 2.1: The definition of the orientation angle θ.

Elaboration of the right-hand side of (2.26) after the introduction of the two
expressions of (2.38) yields the following relations between the on- and off-axis
in-plane compliances.



24 2.4. TWO-DIMENSIONAL STRESS ANALYSIS

S11 = S11 cos4θ + (2S12 + S66) sin2θ cos2θ + S22 sin4θ

S12 = S12

(
sin4θ + cos4θ

)
+ (S11 + S22 − S66) sin2θ cos2θ

S22 = S11 sin4θ + (2S12 + S66) sin2θ cos2θ + S22 cos4θ

S16 = (2S11 − 2S12 − S66) sin θ cos3θ − (2S22 − 2S12 − S66) sin3θ cos θ

S26 = (2S11 − 2S12 − S66) sin3θ cos θ − (2S22 − 2S12 − S66) sin θ cos3θ

S66 = 2 (2S11 + 2S22 − 4S12 − S66) sin2θ cos2θ + S66

(
sin4θ + cos4θ

)
(2.39)

Since the transformed compliance matrix is symmetrical, the six coefficients
of (2.39) are sufficient to construct the complete [S] matrix. Note that, for
an arbitrary value of the orientation angle θ, the transformed compliance ma-
trix has nine non-zero elements. However, the elastic behaviour is still fully
characterised by only four independent material constants. By considering the
relations of (2.12–2.14), the on- and off-axis compliance relations can be trans-
formed into the following relations between the engineering constants [52]

1
Ex

=
1
E1

cos4θ +
(

1
G12

− 2ν12

E1

)
sin2θ cos2θ +

1
E2

sin4θ (2.40)

1
Ey

=
1
E1

sin4θ +
(

1
G12

− 2ν12

E1

)
sin2θ cos2θ +

1
E2

cos4θ (2.41)

1
Gxy

= 2
(

2
E1

+
2
E2

+
4ν12

E1
− 1
G12

)
sin2θ cos2θ +

1
G12

(
sin4θ + cos4θ

)
(2.42)

νxy =Ex

[
ν12

E1

(
sin4θ + cos4θ

)
−
(

1
E1

+
1
E2

− 1
G12

)
sin2θ cos2θ

]
(2.43)

The constants Ex, Ey, Gxy, and νxy are the apparent elastic properties and
represent the values of the engineering constants in the directions defined by the
local axis system. Unlike the principal engineering constants E1, E2, G12, and
ν12, the apparent properties are not independent and do not, therefore, provide
enough information to fully describe the material behaviour. The description
of the material behaviour in the local axis system also requires the values of
the two coefficients of mutual influence. The coefficient of mutual influence of
the first kind characterises the stretching in the i-direction caused by a shear
deformation in the ij-plane. The coefficient of mutual influence of the second
kind characterises the shearing in the ij-plane caused by a normal deformation
in the i-direction. Both coefficients of mutual influence are zero in the on-axis
directions. More details about these coefficients can be found in [55].
The equations (2.40–2.43) allow to plot the apparent elastic properties in func-
tion of the material orientation. To illustrate this, consider a unidirection-
ally reinforced carbon-epoxy material with the following elastic properties:
E1 = 100GPa, E2 = 10GPa, G12 = 5GPa, and ν12 = 0.25. Figure 2.2 presents
the orientational variation of the elastic properties. These plots illustrate that
orthotropic materials have two orthogonal symmetry axes in the 12-plane. One
quarter of the plots of figure 2.2 provides all the available information. The vari-
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Figure 2.2: The variation of the elastic properties in function of the orienta-
tion in a polar coordinate system of the considered carbon-epoxy.

ation of the material properties can therefore be fully represented by plotting
the properties for the range [0◦, 90◦]. Figure 2.3 shows the elastic properties
in this range using a Cartesian coordinate system. The relations between the
principal and apparent elastic properties (2.40–2.43) and the Cartesian repre-
sentation of the variation of the apparent properties will be extensively used in
the identification routines that are developed in chapter 6.

Material orientation [◦]

E
x

[G
P
a
]

0 15 30 45 60 75 90
0

20

40

60

80

100

Material orientation [◦]

E
y

[G
P
a
]

0 15 30 45 60 75 90
0

20

40

60

80

100

Material orientation [◦]

G
x
y

[G
P
a
]

0 15 30 45 60 75 90
4

6

8

10

Material orientation [◦]

ν
x
y

[–
]

0 15 30 45 60 75 90
0.0

0.1

0.2

0.3

0.4

0.5

Figure 2.3: The variation of the elastic properties in function of the orienta-
tion in a Cartesian coordinate system.

2.4.2. Isotropic Materials

Under the Kirchhoff assumptions, the strain-stress relation of an isotropic ma-
terial becomes  ε1

ε2
γ12

 =

S11 S12 0
S12 S11 0
0 0 2 (S11 − S12)

 σ1

σ2

τ12

 (2.44)
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in which

S11 =
1
E

S12 = − ν

E
(2.45)

The in-plane stress-strain relation (2.46) is obtained by inverting the strain-
stress relation (2.44)  σ1

σ2

τ12

 =

Q11Q12 0
Q12Q22 0
0 0 Q66

 ε1
ε2
γ12

 (2.46)

in which the reduced stiffnesses Qij are related to the engineering constants as

Q11 =
E

1− ν2
Q12 =

νE

1− ν2
Q66 =

E

2 (1 + ν)
(2.47)

Unlike the case of orthotropic materials, the Kirchhoff assumptions do not
reduce the number of independent parameters needed to describe the linear
elastic behaviour of isotropic materials.

2.5. Restrictions on the Engineering Constants

The elastic material parameters cannot just take any value, they are restricted
by a number of physical limits [52]. In the case of material identification appli-
cations, these limits can be used to check the validity of the obtained material
parameters.

2.5.1. Orthotropic Materials

The considered restrictions are the so-called thermodynamic constraints which
are based on the principle that the total work done by all the stress components
must be positive in order to avoid the creation of energy [56]. The work done
by a stress component is given by the product of the stress component with
the corresponding strain component. The work of the stress components will
only be positive, if the stiffness and compliance matrices are positive-definite
[56]. Besides this mathematical approach, the restrictions on the engineering
constants can also be derived in a more physical way. Consider a stress field
where only the ith stress component is non-zero. The work done by the stress
field now equals the square of the stress component multiplied by Sii. Since the
work must be strictly positive, the diagonal elements of the compliance matrix
must also be strictly positive. Under the Kirchhoff assumptions, this means
that

S11, S22, S66 > 0 (2.48)

which implies that

E1 > 0 E2 > 0 G12 > 0 (2.49)

In the same way, by considering a strain field where there is only one non-zero
strain component, one can prove that the diagonal elements of the reduced
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stiffness matrix are strictly positive

Q11, Q22, Q66 > 0 (2.50)

Considering the equations of (2.36), this implies that

1− ν12ν21 > 0 (2.51)

By substituting (2.37) into (2.51), this inequality can be rewritten as

|ν12| <
√
E1

E2
or |ν21| <

√
E2

E1
(2.52)

2.5.2. Isotropic Materials

The restrictions on the isotropic material parameters can be established using
the same thermodynamic considerations as in the previous section. Once again,
the diagonal elements of the compliance and reduced stiffness matrix must be
strictly positive. Therefore,

S11 > 0 and Q11 > 0 (2.53)

The first inequality shows that
E > 0 (2.54)

In combination with (2.47) and (2.54), the second inequality implies that

1− ν2 > 0 (2.55)

or that

|ν| < 1 (2.56)

Note that the restriction of (2.56) complies with the restrictions found for
orthotropic materials (2.52). However, in the case of isotropic materials the
upper limit on Poisson’s ratio can be improved. Consider a brick shaped solid
body, made out of an isotropic material, which is subjected to a hydrostatic
pressure p. If this brick shaped body has a unit volume V0, then the volumetric
strain [57] is defined as

εvol =
∆V
V0

=
V − V0

V0
= (1 + ε1)(1 + ε2)(1 + ε3)− 1 ≈ ε1 + ε2 + ε3 (2.57)

By using the three-dimensional strain-stress relations for isotropic materials,
i.e. the inverse of (2.7), the expression of the volumetric strain can be rewritten
as

εvol = 3 (S11 + 2S12) (−p) = 3
(

1
E
− 2ν
E

)
(−p) (2.58)

Note that the hydrostatic pressure p induces a stress σ = −p. The hydrostatic
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pressure will compress the body, which means that the volumetric strain εvol

must be negative. This implies that

1
E
− 2ν
E

> 0 (2.59)

or that

ν <
1
2

(2.60)

The Poisson’s ratio of an isotropic material is thus restricted to the range

− 1 < ν <
1
2

(2.61)

2.6. Summary

This chapter discussed the linear elastic model for both isotropic and or-
thotropic materials. It also presented the principal material parameters that
are required to model the elastic behaviour of a material, the relations between
the material parameters in an on- and off-axis coordinate system, and the re-
strictions on the values of the material parameters which define the feasible
domain of the identification problem.



3
The Finite Element Method &
Sensitivity Analysis

The MNET procedures considered in this text require a mathema-
tical model to compute the resonant frequencies of the test spe-
cimens. There is variety of available techniques of which the finite
element method appears to be the optimal choice. The finite ele-
ment method is not only the most popular technique to perform a
numerical modal analysis, in the case of MNET procedures it has
the advantage that it can provide the response gradients in a com-
putationally efficient way. The second part of this chapter focuses
on the computation of the necessary gradient information by means
of sensitivity analysis.
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3.1. The Finite Element Method

3.1.1. Theoretical Background

The finite element (FE) method is a commonly used technique in the analysis
of mechanical structures, and is particularly useful to compute the vibratory
behaviour of a structure. The versatility of the finite element method makes it
an excellent technique for the development of powerful MNET-based material
identification routines. This section aims at giving a short introduction on the
finite element method, and at defining the notations that will be used in the
remainder of the text. A detailed treatment of the finite element method can
be found in [58, 59] or on-line on [60]. Figure 3.1 presents the three key steps
of the finite element method: idealisation, discretisation and solution.

Y

X

Z

Y

X

Z

Y

X

Z

Idealisation Discretisation Solution

Physical
system

Mathematical
modelmodel

Discrete Discrete
solution

Figure 3.1: Solving a physical problem with the finite element method.

Idealisation

The first step consists of transforming the studied physical system into a mathe-
matical model. This step is called idealisation, because the mathematical model
is necessarily an abstraction of the physical reality. Even to build a model of a
relatively simple system like a layered material sample, a substantial number
of assumptions and simplifications have to be made. In this text, all samples
will be modelled with:

- linear material behaviour
- purely elastic material behaviour, i.e. ignoring the influence of damping
- a uniform sample length, width and (layer) thickness
- homogeneous layers
- a perfect bonding of the different layers

The studied physical system is a vibrating material specimen. The mathe-
matical model can be obtained by expressing the equilibrium of the specimen
using the principle of virtual displacements [58]. According to this principle,
the equilibrium of a body requires that, for any small virtual displacement im-
posed onto the body, the total internal virtual work equals the total external
virtual work ∫

V

σTε̃ dV =
∫

V

ũTfb dV +
∫

S

ũTfs dS +
∑

ũTfc (3.1)

in which u denotes the continuous displacement field, the overscript �̃ marks
the virtual quantities. The left-hand side of (3.1) represents the internal virtual
work, which is a function of the displacement field u since {σ} = [C]{ε} (2.1)
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and {ε} = [∂] {u} (2.3) in every point of the volume V . The right-hand side
quantifies the external virtual work of the body forces (fb), the surface forces
(fs) and the concentrated forces (fc). Since we are studying the free vibrations
of undamped systems, the body forces are the inertial forces and there are no
concentrated or surface forces, i.e.

fb = −ρ ü, fs = 0, fc = 0 (3.2)

Substituting (3.2) into (3.1) provides the mathematical model of a freely vi-
brating, undamped material specimen as a set of partial differential equations∫

V

ũTρü dV +
∫

V

σTε̃ dV = 0 (3.3)

Discretisation

The finite element method solves the partial differential equations of (3.3) by
discretising the mathematical model in space, i.e. the continuous model is re-
duced to a discrete model with a finite number of degrees of freedom. This is
done by dividing the volume of the specimen into a number of elements. Figure
3.2 presents a 20 node 3D element; further on in this chapter it will be shown
that this is the optimal element for vibration-based MNETs.

Figure 3.2: A 20-node 3D finite element.

In the case of 3D elements, the unknowns are the values of the displacement
field u at the nodes of the elements. The displacements of the points between
the nodes are obtained from the nodal displacements by interpolation. In finite
element terminology, the interpolation functions are called shape functions and
will be denoted as Ni. By grouping the shape functions of all the degrees of
freedom i of one element into a shape function matrix [Ne], the continuous
displacement field can be related to the nodal displacement vector {ue} as

ue = [Ne]{ue} (3.4)

where ue is the continuous displacement field limited to the volume enclosed
by the considered element. By inserting (3.4) into (2.3), the continuous strain
field can be related to the nodal displacements as1

εe = [∂][Ne]{ue} = [Be]{ue} (3.5)

Usually, the acceleration field üe is related to the nodal accelerations {üe} with
the same shape functions, so

üe = [Ne]{üe} (3.6)
1The structure of the [Be] matrix obtained from (2.4) is only valid for three-dimensional

elements.
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For the discretised model, the integrals of the system equations (3.3) can be ex-
pressed as a sum of integrals over the elements. In combination with equations
(3.4–3.6), this provides

∑
e

∫
Ve

{ũe}T[Ne]Tρe[Ne]{üe}dVe +
∑

e

∫
Ve

{ũe}T[Be]T[Ce][Be]{ue}dVe = 0 (3.7)

where Ve represents the volume enclosed by the element, ρe and [Ce] respec-
tively describe the mass density and the elastic properties of the material rep-
resented by the considered element. By grouping the nodal displacements of
the whole model into one global nodal displacement vector {U}, equation (3.7)
can be rewritten as

{Ũ}T
[(∑

e

∫
Ve

[Ne]Tρe[Ne] dVe

)
{Ü}+

(∑
e

∫
Ve

[Be]T[Ce][Be] dVe

)
{U}

]
= 0 (3.8)

Since equation (3.8) must hold for any possible virtual displacement, the ex-
pression between the square brackets has to be equal to zero. Finally, the
discretised model equations can be expressed as

[M ]{Ü(t)}+ [K]{U(t)} = {0} (3.9)

where [M ] and [K] are the global mass and stiffness matrices which are defined
as

[M ] =
∑

e

[Me] [K] =
∑

e

[Ke] (3.10)

where

[Me] =
∫

Ve

[Ne]Tρe[Ne] dVe (3.11)

[Ke] =
∫

Ve

[Be]T[Ce][Be] dVe (3.12)

The matrices [Me] and [Ke] are called the element mass and stiffness matrices.
Note that the finite element approach results in a symmetric global mass and
stiffness matrix [58].

Solution

The material identification methods discussed in this text use the finite element
models to compute the resonant frequencies of the test specimens. The resonant
frequencies of the considered sample can be computed from (3.9) by assuming
that the nodal displacements can be expressed as harmonic functions

{U(t)} = {ψ} sinωt (3.13)
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in which ω represents the circular frequency and the vector {ψ} describes the
amplitude of the nodal displacements. By introducing (3.13) into (3.9), the time
dependent factor can be segregated and eliminated. This leaves the following
algebraic condition (

[K]− ω2[M ]
)
{ψ} = {0} (3.14)

Equation (3.14) has the form of a generalised eigenvalue problem, where the
eigenvalues λi = ω2

i are the squared circular resonant frequencies while the
eigenvectors {ψ}i represent the corresponding mode shapes2. By defining a
diagonal matrix [Λ] that groups all the eigenvalues, and by combining all the
eigenvectors in one mode shape matrix [Ψ] = [{ψ}1 {ψ}2 . . . {ψ}n], the eigen-
value problem (3.14) can be written as

[K][Ψ]− [M ][Ψ][Λ] = [0] (3.15)

There is a whole range of numerical techniques to solve the eigenvalue problem
of (3.15), with the block-Lanczos algorithm being the most popular one [61].
To conclude, note that the eigenvectors are only defined upon a constant factor
α, i.e. both {ψ} and α{ψ} comply with (3.14). To obtain a unique solution,
the mode shapes are usually scaled in such a way so as to satisfy the following
condition

{ψ}T[M ]{ψ} = {1} (3.16)

Mode shapes scaled according to (3.16) are said to be mass normalised.

Error Sources

Every simulation step introduces a source of error, therefore one has to deal
with modelling, discretisation and solution errors. The modelling errors result
from the assumptions and simplifications that are made during the idealisation
step. In engineering applications, the modelling errors are by far the most
important ones, but they are very difficult to quantify [60]. Next in order
of importance are the discretisation errors. Even if the solution errors are
ignored – and usually they can be ignored – the solution of the discrete model
is in general only an approximation of the exact solution of the mathematical
model. The corresponding error, the discretisation error, decreases with an
increasing number of degrees of freedom.

3.1.2. Finite Element Modelling in Material Identification

While the previous section dealt with the general theory behind the finite ele-
ment method, this section focuses on the practical use of FE-modelling in the
field of material identification. It addresses three important choices that have
to be made to build a finite element model of a test specimen, i.e. the element
type, the order of the shape functions, and the density of the mesh.

2A mode shape represents the relative displacement of all points on a structure at a
particular resonant frequency.
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The Element Type

The first choice regards the dimension of the elements, i.e. whether the elements
are one-dimensional, two-dimensional or three-dimensional. Figure 3.3 presents
these three classes of elements.PSfrag

One-dimensional Two-dimensional Three-dimensional

Linear Triangular Rectangular Tetrahedral Hexahedral

Figure 3.3: A number of commonly used element types.

One-dimensional elements cannot be used to model layered materials, since they
are limited to homogeneous isotropic materials3. Therefore, one-dimensional
elements will not be considered in the remainder of this text.
In theory, both two- and three-dimensional elements can be used to model
layered beam- and plate-shaped samples. Two- and three-dimensional elements
are available in different shapes, e.g. triangular, rectangular, tetrahedral, and
hexahedral. The triangular and tetrahedral elements are only useful to model
complex shapes. The rectangular and hexahedral elements are better suited
to model rectangular beam- and plate-shaped specimens. Three-dimensional
elements can be used for any type of structure and application, their use being
only restricted by the high computational cost. Two-dimensional elements are
computationally more efficient than three-dimensional elements, but their use
in vibration-based MNETS is restricted by a number of limitations on the
element formulation.
To verify whether two-dimensional elements are suitable to model the vibratory
behaviour of the test samples, the three reference beams of figure 3.4 were
modelled with both two- and three-dimensional elements. Table 3.1 summarises
the properties of these three beams, table 3.2 presents the resonant frequencies
that were obtained4 for the fundamental flexural (ff ) and fundamental torsional
mode (ft).

Beam-1 Beam-2 Beam-3

Figure 3.4: The three reference beams.

3In theory, it is possible to develop a one-dimensional element for layered materials. How-
ever, such an element is not available in commercial software packages as Nastran, Ansys,
Patran, Marc, FEMtools etc.

4All the FE-calculation presented in this text were performed with the FEMtools software.
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Table 3.1: The properties of the three reference beams.

Material
E [GPa] 70.0
ν [–] 0.34
ρ [kg/m3] 2700

Sample l [mm] w [mm] t [mm]
Beam-1 100.00 4.00 4.00
Beam-2 100.00 8.00 2.00
Beam-3 100.00 8.00 1.00

Table 3.2: The resonant frequencies of the three reference beams.

Beam-1 Beam-2 Beam-3
ff [Hz] ft[Hz] ff [Hz] ft[Hz] ff [Hz] ft[Hz]

2D 2095.10 30368.07 1047.97 7742.80 523.99 3878.05
3D 2081.65 14284.31 1046.05 6933.29 523.99 3710.38
Diff. 0.65% 112.60% 0.18% 11.68% 0.00% 4.52%

The results show an acceptable agreement between the resonant frequencies of
the flexural mode, but reveal a significant difference for the frequency of the
fundamental torsional mode. To verify if the results of the three-dimensional
model are in fact more accurate than those of the two-dimensional model, the
elastic material properties were identified from the resonant frequencies using
the standardised ASTM identification formulas5. Table 3.3 presents the identi-
fied properties, and the differences between these properties and the properties
of the finite element models.

Table 3.3: The properties identified with the ASTM formulas.

Beam-1 Beam-2 Beam-3
Value Diff. Value Diff. Value Diff.

E [GPa] 70.93 1.3% 70.37 0.5% 70.22 0.3%2D-model
G [GPa] 118.02 351.8% 32.33 23.8% 28.19 7.9%
E [GPa] 70.03 0.0% 70.11 0.2% 70.22 0.3%3D-model
G [GPa] 26.11 0.0% 25.92 −0.8% 25.81 −1.2%

If the frequencies are correct, they should result in the properties of the finite
element model. Table 3.3 clearly indicates that the resonant frequencies of the
three-dimensional model are more accurate than those of the two-dimensional
model. Note that the ASTM formulas were derived for samples with a square
cross-section and that an empirical correction factor is applied for samples with

5The ASTM standard [4] presents a set of analytical formulas that can identify the elastic
and shear modulus of homogeneous and isotropic beam-shaped samples from the resonant fre-
quencies of the fundamental flexural and torsional modes. The ASTM formulas are discussed
in appendix A.
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a rectangular cross-section. Therefore, the accuracy of the ASTM formulas
decreases with the aspect-ratio of the cross-section. This explains why the
difference is zero for beam-1 and increases from beam-2 to beam-3, in the case
of the three-dimensional model. This evaluation demonstrates that material
identification applications require three-dimensional finite element models.

The Order of the Shape Functions

The second choice that has to be made in order to build an FE-model regards
the order of the shape functions of the elements. As explained in section 3.1.1,
the finite element method calculates the modal displacements only in the nodes.
The displacements of the other points are derived from the nodal displacements
by means of shape functions. Standard finite element softwares usually pro-
vide elements with linear and quadratic shape functions. Using elements with
quadratic shape functions results in a faster convergence of the resonant fre-
quencies6 with respect to the mesh density in the length, width, and thickness
direction. To illustrate this, the fundamental out-of-plane flexural frequency
of an aluminium beam was computed with a three-dimensional finite element
model using both linear or quadratic shape functions. The mesh density in the
length direction of the beam was gradually increased. Figure 3.5 presents the
obtained resonant frequency as a function of the degrees of freedom of the finite
element model. It is clear that the use of quadratic shape functions requires
much less degrees of freedom than the use of linear shape functions, and will
therefore result in a shorter computation time.
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Figure 3.5: Comparison of the resonant frequency of the fundamental flexural
mode computed with the linear and quadratic shape functions.

The Mesh Density

The last model parameter that has to be chosen is the mesh density. Section
3.1.1 explains that the finite element method uses a discretised version of the

6Finite element models with 3D elements are solved in terms of nodal displacements. The
convergence criterion should thus be expressed in terms of displacements instead of in terms
of resonant frequencies. However, the considered test samples have a rectangular shape and
a structured mesh. Therefore, it is acceptable to express the convergence criterion in terms
of resonant frequencies.
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initial model to approximate the solution. The finer the discretisation, the
better the FE-solution will approximate the correct solution. However, the
finer the discretisation, the longer it takes to solve the system equations. The
choice of the mesh density is therefore always a trade-off between accuracy
and computation time. Since in material identification both accuracy and
computation time7 are important, the mesh density should be chosen in a well-
considered manner.
Due to the fact that the correct solution to the problem is unknown, it is
impossible to estimate the accuracy of the discretised solution in absolute terms.
Consider two finite element models of which one has a mesh density of ne

elements along a particular sample side, while the other model has a mesh
density of ne+1 elements along the same side. The relative difference between
the frequencies of one particular mode of these two models (δ) can be expressed
as

δ =
f (ne) − f (ne+1)

f (ne)
(3.17)

Because the finite element solution converges with a refinement of the discreti-
sation, the relative frequency difference will decrease with an increasing mesh
density. Once δ is smaller than a predefined limit δ, the solution can be con-
sidered to have converged and the mesh density ne should be used to model
the test sample. A threshold δ = 0.01 % was found to be a good compromise
between speed and accuracy, and will be kept throughout this text.
Consider a 100×25×2 mm aluminium beam with the material properties of
table 3.1. The resonant frequencies of the first four vibration modes were
computed for an increasing mesh density along the length, width and thickness
direction. Figure 3.6 presents the mode shapes of the first four vibration modes:
two out-of-plane flexural (OOP) and two torsional (Tors) modes. Figures 3.7
to 3.9 present the relative frequency difference δ in function of the number of
elements along a particular sample direction. These plots show that the higher
order modes converge slower than the lower order modes, e.g. the first flexural
mode requires 19 elements in the length direction, while the second flexural
mode needs 25 elements. From a computational point of view, it is thus not
advisable to include the higher order modes in the identification routines, if this
is not strictly necessary. According to this convergence study, the computation
of the fundamental flexural and torsional mode requires a finite element model
with a 19×16×3 element mesh. Although the considered sample is much longer
than wide, i.e. a length/width ratio of 4, the convergence criterion requires more
or less the same number of elements in the length and the width direction. This
shows that it is very difficult to determine a correct mesh density intuitively. It

7Accuracy — The material identification routines described in this text use simple beam-
or plate-shaped specimens that are carefully machined out of a uniform material sample.
The modelling error is therefore much lower than for finite element models of conventional
engineering structures like car bodies or jet engines. Unlike in conventional finite element
models, the discretisation error of a material sample model cannot be ignored.
Computation time — Solving the finite element model(s) is a part of every iteration step of
the identification routine. A small reduction in the computation time of one model can thus
result in a significant reduction of the total computation time.
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PSfrag
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Figure 3.6: The first four vibration modes of the beam model.
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Number of elements in the width direction

R
el

a
ti
v
e

d
iff

er
en

ce
δ

[%
]

Convergence limit

Frequency OOP-1
Frequency OOP-2
Frequency Tors-1
Frequency Tors-2

0 2 4 6 8 10 12 14 16 18 20
0.00

0.05

0.10

0.15

0.20

Figure 3.8: The convergence plot in the width direction.
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Figure 3.9: The convergence plot in the thickness direction.
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is strictly necessary to perform a convergence study for every sample geometry
used in the identification procedure.

3.1.3. Conclusions

Vibration-based material identification requires finite element models made
of three-dimensional elements with quadratic shape functions. To limit the
computation time to an acceptable level, it is advisable to use only the lower
order modes, and to determine the optimal mesh density with a convergence
study.

3.2. Sensitivity Analysis

The aim of sensitivity analysis is to quantify the influence of the input para-
meters of a particular model on the values of the output quantities. In this
definition, the term model should be interpreted in a very broad sense. The
model can be any type of mathematical relation between a set of input para-
meters and a set of output quantities. In sensitivity analysis, there are two
important approaches: global sensitivity analysis and local sensitivity analysis.
Global sensitivity analysis tools are statistical methods that aim at estimating
the importance of the input parameters of a particular model, considering a
well-defined region in the input parameter space. There is of course no ab-
solute definition for the term ‘important’, but it generally relates to how much
and/or what kind of influence each input has on the outputs of interest [62].
Global sensitivity analysis attempts to comprehend the general behaviour of
the model in a large region of the parameter space. It can be used to study the
overall input-output relations of complex models, to identify the principal in-
put parameters or to reduce the dimensionality of the input space of the model
by fixing the values of the least important input parameters. An introduction
to global sensitivity analysis can be found in [63], a full overview of the theory
and applications of global sensitivity analysis is presented in [64].
Local sensitivity analysis aims at estimating the influence of the input para-
meters on the output quantities in one particular point of the input parameter
space. Local sensitivity analysis techniques result in a number of sensitivity
coefficients. Each sensitivity coefficient represents the rate of change of a par-
ticular model response caused by a change of a specific input parameter. These
sensitivity coefficients can relate a step taken from a particular point in the in-
put parameter space to the corresponding step in the output parameter space.
Therefore, local sensitivity analysis is an excellent tool to predict the modifi-
cation needed to achieve a desired change of the behaviour of a system [65].
Since this is exactly what is needed to solve inverse problems, only local sensi-
tivity analysis techniques will be considered in the remainder of this text. For
reasons of convenience, the term ‘local sensitivity analysis’ will be shortened
into sensitivity analysis.

3.2.1. Finite Difference versus Differential Sensitivities

The finite difference approach [66, 67] is the oldest and most commonly used
method to calculate sensitivity coefficients. With the finite difference approach
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the partial derivative of the model response is numerically approximated from
the responses calculated with a set of slightly modified parameters. The centred
finite difference approach approximates the sensitivity coefficients as

∂ri(p)
∂p

≈ ri(p+ ∆p)− ri(p−∆p)
2∆p

(3.18)

where ri(p) is the ith response of the FE-model for the parameter value p,
and ∆p is the considered parameter perturbation. While this is an accurate
approximation, it has the major disadvantage that two perturbed FE-models
have to be solved. Two computationally more efficient approximation schemes
are the forward and backward finite difference approaches, where the sensitivity
coefficients are defined by (3.19) and (3.20), respectively.

∂ri(p)
∂p

≈ ri(p+ ∆p)− ri(p)
∆p

(3.19)

∂ri(p)
∂p

≈ ri(p)− ri(p−∆p)
∆p

(3.20)

ri(p)

Backward Forward

Centred

p − ∆p p p + ∆p

Figure 3.10: Comparison of the centred, forward, and backward approxima-
tion schemes.

Since the response ri(p) is already known from the FE-analysis, the calculation
of a sensitivity coefficient with (3.19) or (3.20) only requires one additional FE-
analysis. For small values of the perturbation ∆p, the differences between the
centred and the forward or backward approach will be minimal, which means
that the forward or backward approach should be preferred over the centred
approach. But even by adopting a forward or backward approximation scheme,
the finite difference approach remains highly inefficient from a computational
point of view. The main advantage of the global finite difference approach is
the simplicity of its implementation. Note that it is not even necessary to have
access to the finite element code to implement this type of sensitivity analysis.
On the other hand, differential sensitivity calculation is based on explicit ex-
pressions of the partial derivatives of the FE-responses. This approach has
the main advantage that it results in a severe reduction of the computational
cost in comparison with the finite difference approach. The major drawback
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of the differential approach is that every model parameter requires a dedicated
sensitivity expression, which has to be derived from the model equations. The
application of the differential approach also requires interaction with the finite
element code, which makes this approach more difficult to implement. Note
that all the drawbacks of the differential approach are situated in the imple-
mentation phase; once implemented, the user will definitely benefit from the
reduced computational cost of the differential approach.

3.2.2. The Direct versus the Adjoint Approach

In differential sensitivity calculation, there are two major approaches to derive
the sensitivity expressions from the model equations: the direct and the adjoint
approach [68, 69]. With the finite element method, the governing differential
equations are discretised and transformed to a set of algebraic equations. In
the residual form, these algebraic equations can be expressed as

M
(
u(p), p

)
= 0 (3.21)

where p represents the set of model parameters and u(p) represents the direct
output of the finite element model. In general, the response of interest is not
always a direct output quantity of the finite element model; in fact, the output
of a structural finite element model is given in terms of displacements, while
the user, for example, might be interested in stresses. The response of interest
rj is thus a function of both the input parameters p and output quantities u(p).
This relation can be written as

rj = R
(
u(p), p

)
(3.22)

An expression for the sensitivity coefficient of the output quantity rj with re-
spect to a particular model parameter pi can be obtained by derivation of
equation (3.22).

drj
dpi

=
∂R
∂u

∂u

∂pi
+
∂R
∂pi

(3.23)

In this expression, the terms ∂R
∂u and ∂R

∂pi
can easily be obtained by deriving

the explicit relation of (3.22), e.g. the displacement-stress relation. The main
challenge of the sensitivity computation lies in the evaluation of the term ∂u

∂pi
.

With the direct approach [68], the term ∂u
∂pi

is determined by the direct differ-
entiation of expression (3.21).

dM
dpi

=
∂M
∂u

∂u

∂pi
+
∂M
∂pi

= 0 (3.24)

or

∂M
∂u

∂u

∂pi
= −∂M

∂pi
(3.25)

The direct approach thus requires a solution of the set of equations defined
by (3.25) with respect to ∂u

∂pi
. This set of equations has to be solved for each
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considered model parameter pi, which means that the computational cost of the
direct approach is proportional to the number of considered model parameters.
The adjoint approach [67] aims at reducing the computational cost by consid-
ering the following Lagrange functional

r̃j = R
(
u(p), p

)
− λTM

(
u(p), p

)
(3.26)

Note that r̃j = rj and dr̃j

dpi
= drj

dpi
for any value of λ since M

(
u(p), p

)
= 0.

Differentiation of equation (3.26) provides

dr̃j
dpi

=
drj
dpi

=
∂R
∂u

∂u

∂pi
+
∂R
∂pi

− λT
(
∂M
∂u

∂u

∂pi
+
∂M
∂pi

)
(3.27)

By grouping the terms that contain direct output derivatives, expression (3.27)
can be rewritten as

drj
dpi

=
(
∂R
∂u

− λT
∂M
∂u

)
∂u

∂pi
+
∂R
∂pi

− λT
∂M
∂pi

(3.28)

By choosing the Lagrange multipliers λ in such a way that

λT
∂M
∂u

=
∂R
∂u

(3.29)

the direct output derivatives ∂u
∂pi

can be eliminated from the sensitivity equa-
tions and expression (3.28) simplifies to

drj
dpi

=
∂R
∂pi

− λT
∂M
∂pi

(3.30)

The application of the adjoint approach requires a solution for the adjoint
problem defined by the set of equations (3.29). The adjoint problem has to be
solved for each different functional R, which means that the computation cost
is proportional to the number of considered output quantities rj .
To summarize, the computational cost of the direct approach is determined
by the number of considered model parameters, while the computational cost
of the adjoint approach is determined by the number of considered output
quantities. To guarantee the uniqueness of an inverse problem, the number of
unknown model parameters, i.e. the parameters used in the sensitivity analysis,
must be smaller than the number of considered output quantities. This implies
that, in the case of inverse problems, the direct approach will always be more
efficient than the adjoint approach.

3.2.3. Sensitivity Coefficients of Vibrating Structures

The Expression for the Frequency Sensitivities

This section presents the differential computation of the resonant frequency
sensitivity coefficients using the direct approach. The following derivation was
introduced by Fox and Kapoor [70], and is based on the direct derivation of
the discretised differential equations of an undamped vibrating structure. As
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shown in section 3.1.1, the discretised differential equations are given by the
set of algebraic equations of (3.15).

[K][Ψ]− [M ][Ψ][Λ] = [0]

Pre-multiplication of the ith equation of expression (3.15) with the transpose
of the ith eigenvector gives

{Ψ}Ti ([K]− λi[M ]) {Ψ}i = {0} (3.31)

Differentiating expression (3.31) with respect to the model parameter p yields

∂{Ψ}Ti
∂p

([K]− λi[M ]) {Ψ}i + {Ψ}Ti
∂ ([K]− λi[M ])

∂p
{Ψ}i +

{Ψ}Ti ([K]− λi[M ])
∂{Ψ}i

∂p
= {0}

(3.32)

Since the finite element method generates symmetrical stiffness and mass ma-
trices, expression (3.32) can be rewritten as

2
∂{Ψ}Ti
∂p

([K]− λi[M ]) {Ψ}i + {Ψ}Ti
∂ ([K]− λi[M ])

∂p
{Ψ}i = {0} (3.33)

The ith equation of (3.31) shows that the first term of (3.33) equals zero, ex-
pression (3.33) thus simplifies to

{Ψ}Ti
∂ ([K]− λi[M ])

∂p
{Ψ}i = {0} (3.34)

or

{Ψ}Ti
(
∂[K]
∂p

− ∂λi

∂p
[M ]− λi

∂[M ]
∂p

)
{Ψ}i = {0} (3.35)

By assuming that the mode shapes are mass normalised as defined by (3.16),
expression (3.35) can be rewritten as

∂λi

∂p
= {Ψ}Ti

(
∂[K]
∂p

− λi
∂[M ]
∂p

)
{Ψ}i (3.36)

The eigenvalues λi are related to the resonant frequencies fi as

λi = ω2
i = (2πfi)2 (3.37)

The general expression for the resonant frequency sensitivities of an undamped
structure is found by substitution of (3.37) into (3.36).

∂fi

∂p
=

1
8π2fi

{Ψ}Ti
(
∂[K]
∂p

− 4π2f2
i

∂[M ]
∂p

)
{Ψ}i (3.38)

For the identification of the material parameters, the sensitivities have to be
calculated with respect to the elastic properties. Since a change of the elastic
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properties does not affect the mass of the structure, the general sensitivity
expression reduces to

∂fi

∂p
=

1
8π2fi

(
{Ψ}Ti

∂[K]
∂p

{Ψ}i

)
(3.39)

Semi-Analytical Sensitivities

The evaluation of equation (3.39) requires the derivative of the stiffness matrix
with respect to the elastic material parameters. This derivative is often difficult
to calculate analytically. For this reason, a semi-analytical approach, in which
the derivatives of the stiffness matrix are approximated by finite differences, is
commonly used [69]. The derivatives are usually calculated with a first-order
forward approximation, or

∂[K]
∂p

≈ ∆[K]
∆p

=
[K(p+ ∆p)]− [K(p)]

∆p
(3.40)

This semi-analytical approach combines the advantages of both the finite dif-
ference and differential approach. Like the finite difference approach, it is
applicable for every possible type of model parameter. However, the semi-
analytical approach is much faster than the finite difference approach since it
only requires the calculation of a perturbed stiffness matrix, it does not require
to solve any additional FE-models. The gain in computation time obtained
by using the semi-analytical approach can easily be illustrated by considering
a standard FE-model used in material identification. Solving a finite element
model can be split up in three steps: the computation of the stiffness matrix
[K], the calculation of the mass matrix [M] and solving the eigenvalue problem
(3.15). Table 3.4 presents the computation time that is required for these three
steps. It illustrates very clearly that replacing the finite difference approxi-
mation of the partial derivatives of the FE-responses (3.18–3.20) by a finite
difference approximation of the partial derivative of the stiffness matrix (3.39–
3.40) will lead to a drastic reduction of the calculation time needed to perform
the sensitivity analysis.

Table 3.4: The computation time of the different steps of an FE-analysis for
a typical material specimen.

Calculation step CPU Time [s] Relative importance
Stiffness matrix [K] 1.99 6.4%
Mass matrix [M ] 4.86 15.7%
Eigenvalue problem (3.15) 24.24 77.9%
Total FE-analysis 31.09 100.0%

Using Element Matrices

Table 3.4 does not provide an accurate estimation of the calculation time needed
to perform a sensitivity analysis, since the computation of the partial derivative
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of the stiffness matrix [K] is not the only time-consuming step. A direct appli-
cation of (3.39) implies a pre- and post-multiplication of the partial derivative
of the stiffness matrix [K] with the mode shape vector {Ψ}i. Consider a three-
dimensional FE-model, i.e. 3 displacement degrees of freedom per node, with n
nodes. This model has a stiffness matrix [K] ∈ R3n×3n and a mode shape vec-
tor {Ψ}i ∈ R3n. In this case, the evaluation of (3.39) requires a multiplication of
a 1×3n vector with a 3n×3n matrix, followed by the multiplication of a 1×3n
vector with a 3n×1 vector. Consequently, the vector-matrix and vector-vector
product results in a total computational cost of 2(3n)2 + 2(3n) = 18n2 + 6n
floating point operations (flops). This indicates that the computation time in-
creases quadratically with the size of the FE-model. The stiffness matrix [K] is
a sparse matrix, so the majority of the floating point operations are superfluous
since they are additions or multiplications with 0. Fortunately, these useless
operations can be avoided. From the structure of the global stiffness matrix
[K] it can be seen that the expression (3.39) can be written in terms of element
matrices as (

∂fi

∂p

)
e

=
1

8π2fi

(
{Ψe}Ti

∂[Ke]
∂p

{Ψe}i

)
(3.41)

in which [Ke] is the element stiffness matrix and {Ψe} is the vector containing
the nodal displacements of the nodes of the considered element. Expression
(3.41) gives the influence of a stiffness change in a single element of the FE-
model on the frequency fi. To obtain the full sensitivity coefficient, expression
(3.41) has to be summed over all the elements of the FE-model.

∂fi

∂p
=

1
8π2fi

ne∑
e=1

(
{Ψe}Ti

∂[Ke]
∂p

{Ψe}i

)
(3.42)

In the case of quadratic solid elements (n = 20), the element stiffness matrix
[Ke] ∈ R60×60, and the mode shape vector {Ψe}i ∈ R60. Expressed in floating
point operations, the evaluation of the summation of expression (3.42) has a
cost of ne×(2×602+2×60) = 7320×ne flops. Using the formulation of (3.42),
the computational cost of the sensitivity analysis only increases linearly with
the size of the FE-model. From the flop cost, it can be estimated that for an
FE-model with 25×25×2 elements the evaluation of expression (3.42) will be
about 160 times faster than the direct evaluation of expression (3.39). Note
that the gain8 in computation time for the full sensitivity analysis will be
160×(number of responses×number of parameters).

Exploiting the Symmetry Properties

A characteristic that is often used to reduce the computation time of a finite
element analysis is to exploit the (anti)symmetry of the structure. By intro-
ducing the appropriate boundary conditions, the model can then be limited to
a half, a quarter, or even a smaller fraction of the structure. Unfortunately, this
approach cannot be used in vibration-based material identification. Although

8This only considers the gain made with the evaluation of sensitivity expression, it does
not consider the computation of the partial derivative of the stiffness matrix.
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Figure 3.11: The first row shows the relative amplitude of the nodal dis-
placements of the first three vibration modes of a plate-shaped
specimen. The other four rows show the element sensitivities of
the same modes.
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the structures, i.e. beam- or plate-shaped specimens, have two orthogonal sym-
metry axes due to the fact that the material properties are considered to be
homogeneous, the resulting modes do not have a unique symmetry pattern;
for example, the torsional mode is anti-symmetric, while the breathing mode
is symmetric as illustrated in the first row of figure 3.11. Therefore, it is im-
possible to find a set of boundary conditions for a half- or quarter-plate model
that will result in the correct modes. Limiting the specimen to a half or a
quarter would require solution of the FE-model with different sets of boundary
conditions, and with thus not lead to a lower computation time.
However, since all the mode shapes are symmetric or anti-symmetric, the el-
ement sensitivities have a double symmetry pattern. Consider two symmetri-
cally positioned elements of the FE-model of a homogeneous beam- or plate-
shaped specimen. These two elements will have the same element stiffness
matrices, so

∂[K1]
∂p

=
∂[K2]
∂p

(3.43)

For the ith mode, the element mode shape vectors of the two elements will be
related as

{Ψ1}i = {Ψ2}i or {Ψ1}i = −{Ψ2}i (3.44)

for a symmetric or an anti-symmetric mode shape, respectively. So, expressions
(3.43) and (3.44) show that the element sensitivities defined by (3.41) will be
equal for these two symmetrically positioned elements, for both symmetrical
and anti-symmetrical modes. Figure 3.11 presents the element sensitivities
with respect to E1, E2, G12 and ν12 of the resonant frequencies of the first
three vibration modes of a plate. It can be seen that for double symmetrical,
e.g. saddle and breathing mode, as well as for double anti-symmetrical, e.g.
torsional mode, the element sensitivities always have a double symmetrical
pattern. This means that the overall sensitivity coefficients can be calculated
from the element sensitivities of only one quarter of the finite element model,
or

∂fi

∂p
=

4
8π2fi

ne
4∑

e=1

(
{Ψe}Ti

∂[Ke]
∂p

{Ψe}i

)
(3.45)

considering an appropriate numbering of the FE-model’s elements. The use of
this symmetry property will reduce the calculation time of the summation of
(3.42) by a factor of 4. Note that in the case of laminates with a symmetric
lay-up, it is even possible to consider only the upper or lower half of the quarter
specimen to calculate the frequency sensitivities.

The Optimal Perturbation Step

Both the finite difference and the semi-analytical differential approach provide a
numerical approximation of the sensitivity coefficients. The obtained sensitivity
coefficients will therefore be corrupted with a numerical error.
To study this error [68], consider the forward finite difference approach. The
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relation between the model responses for the parameter sets p and p+ ∆p can
be expressed with the following Taylor expansion.

r(p+ ∆p) = r(p) +
∂r(p)
∂p

∆p+
1
2
∂2r(p)
∂p2

∆p2 + ϑ(∆p3) (3.46)

The first derivative of the response r with respect to the parameter p can thus
be written as

∂r(p)
∂p

=
r(p+ ∆p)− r(p)

∆p
− 1

2
∂2r(p)
∂p2

∆p− ϑ(∆p2) (3.47)

The calculated response of a numerical model rm(p) is only an approximation
of the exact response r(p) or

r(p) = rm(p) + εm(p) (3.48)

where εm(p) represents the total round-off error introduced by the floating
point operations of the numerical model. The substitution of expression (3.48)
into equation (3.47) gives

∂r(p)
∂p

=
rm(p+ ∆p)− rm(p)

∆p︸ ︷︷ ︸
sensitivity coefficient

+
εm(p+ ∆p)− εm(p)

∆p︸ ︷︷ ︸
round-off error

− 1
2
∂2r(p)
∂p2

∆p− ϑ(∆p2)︸ ︷︷ ︸
truncation error

(3.49)

According to expression (3.49), the exact sensitivity coefficient can be divided
into three parts [68]. The first part is the finite difference approximation of
the sensitivity coefficient that results from the sensitivity analysis. The second
term is the round-off error which is caused by the finite accuracy of the floating
point numbers used in the numerical algorithm of the model. The influence
of the round-off error is random and will decrease with an increase of the
parameter perturbation ∆p. The last term represents the truncation error
which is introduced by ignoring the higher order terms of the Taylor expansion.

Parameter perturbation

S
en

si
ti
v
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y

Round-off error

Truncation error

Stable zone

Figure 3.12: The influence of the round-off and truncation error on the sen-
sitivity coefficients.
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The truncation error is a systematic error and increases with an increase of the
parameter perturbation. The optimal parameter perturbation should thus be
a trade-off between minimising the round-off error and the truncation error.
Figure 3.12 illustrates the influence on the round-off and truncation error on
the sensitivity coefficients.
Expression (3.49) does not hold for the semi-analytical approach. However,
in a similar way it can be shown that the exact sensitivity coefficient consists
of the same three parts: the approximate sensitivity coefficient, the round-off
error, and the truncation error.
Reference [71] presents a commonly used method to obtain the optimal pa-
rameter perturbation. The starting point of [71] is that the optimal parame-
ter perturbation should be as small as possible, without causing an excessive
round-off error. The presented theory relates the smallest acceptable parame-
ter perturbation to the numerical precision of the floating point type of the
computer platform η as

∆p? =
√
ηp (3.50)

According to (3.50), the influence of the round-off error is independent of the
number of floating point operations that are needed for the sensitivity analysis.
Expression (3.50) thus risks to underestimate the optimal parameter perturba-
tion in the case of FE calculations. When considering a computer platform9

with a floating point precision of 2.22 ·10−16, expression (3.50) results in a value
of ∆p?

p = 1.5 ·10−8 for the optimal relative parameter perturbation.
To check the validity of this perturbation value, a sensitivity analysis with
respect to the elastic properties was performed for relative parameter pertur-
bations ranging from 1 to 10−10. The considered structure is a brass10 plate
of 100×100×0.8 mm that was modelled with a 20×20×1 element grid. The
sensitivity coefficients of the first five resonant frequencies with respect to the
orthotropic material constants E1, E2, G12, and ν12 were calculated using the
semi-analytical differential approach. Figure 3.13 presents the results that were
obtained for the third vibration mode. Similar results were found for the other
vibration modes. The graphs clearly show the systematic influence of the trun-
cation error and the random influence of the round-off error. The results also
show that a relative parameter perturbation of 10−8 is usually located in the
zone in which the sensitivity coefficients are heavily influenced by the round-off
error. For material identification applications, a relative parameter perturba-
tion of 10−4 appears to be a good compromise between the minimisation of the
round-off and truncation error.
The uncertainty analysis procedures that are presented in chapter 7, also re-
quire the sensitivity of the resonant frequencies with respect to the sample
length, width, thickness and mass. The solid lines of figure 3.14 represent the
sensitivity coefficients that were obtained with the semi-analytical differential
approach. The mass sensitivities display a behaviour that is similar to that of
the stiffness sensitivities. However, there is a serious problem for the length,

9The FEMtools software running on Windows XP.
10For this analysis, the material properties of table 6.1 were used.
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Figure 3.13: Stability of the sensitivity coefficients for the third vibration
mode, i.e. breathing mode, of a brass plate using the semi-
analytical differential approach.
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Figure 3.14: Stability of the sensitivity coefficients for the third vibration
mode, i.e. breathing mode, of a brass plate.
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width and thickness sensitivities. For these three parameters, there is no stable
zone as the region that is corrupted by the round-off error is directly followed
by the zone that is influenced by the truncation error. The sensitivity coef-
ficients were also computed with the forward finite difference approach. The
obtained results are represented by the dashed lines of figure 3.14. The finite
difference sensitivities have a stable zone for relative parameter perturbations
ranging between 10−4 and 10−2.
The computation of the length, width and thickness sensitivities requires a
perturbation of the nodes of the finite element mesh. The computation of
the stiffness and mass sensitivities does not change the mesh, it only changes
the internal element properties. This appears to have serious consequences for
the sensitivity analysis. The stiffness and mass sensitivities can be computed
with the computationally efficient semi-analytical differential approach, using
a relative perturbation of 10−4. The length, width and thickness sensitivities
have to be computed using the much slower finite difference approach, with an
advisable relative perturbation of 10−3.

3.2.4. The Sensitivity Matrix

A single sensitivity coefficient expresses the influence of the change of one model
parameter on a particular output quantity. Since the used sensitivity coeffi-
cients are first order linear approximations, the influence of a set of parameters
on an output quantity can be expressed as the sum of the individual influences,
or

∆r =
∂r

∂p1
∆p1 +

∂r

∂p2
∆p2 + . . .+

∂r

∂pnp

∆pnp
(3.51)

in which

∆r= rnew − rold

∆p= pnew − pold

In most cases, not a single but a whole set of output quantities is being used.
In this case, the influence of the parameter set on the output set can be written
as

∆r1 =
∂r1
∂p1

∆p1 +
∂r1
∂p2

∆p2 + . . .+
∂r1
∂pnp

∆pnp

... (3.52)

∆rnr =
∂rnr

∂p1
∆p1 +

∂rnr

∂p2
∆p2 + . . .+

∂rnr

∂pnp

∆pnp

In matrix form, (3.52) can be expressed as

{∆r} = [S]{∆p} (3.53)

with
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{∆r} =


∆r1

...
∆rnr

, {∆p} =


∆p1

...
∆pnp

, [S] =


∂r1
∂p1

. . .
∂r1
∂pnp

...
. . .

...
∂rnr

∂p1
. . .

∂rnr

∂pnp

 (3.54)

The vectors {∆r} and {∆p} are the response and parameter vector, respec-
tively. The matrix [S] is called the sensitivity matrix. A row of the sensitivity
matrix contains the sensitivities of one particular response, a column contains
the sensitivities with respect to one particular parameter. In MNETs, sensi-
tivity analysis is used to estimate the parameter changes needed to achieve the
required change of the model output, {∆r}. The required output changes are
determined by the difference between the current model output {rnum} and
the experimentally measured output {rexp}, so

{∆r} = {rexp} − {rnum} (3.55)

Since a unique solution is required, there have to be more outputs than parame-
ters, so in general it will be impossible to exactly achieve the desired change.
The difference between the desired change {∆r} and the optimal achievable
change {∆r?} can be expressed by a residual vector {ε}, or

{∆r} = {∆r?}+ {ε} (3.56)

The optimal achievable response change is the change that minimises the resid-
uals. In chapter 4 it will be shown that, if the residuals are minimised in a
least-squares sense, the optimal parameter changes are given by the right hand
side of expression (3.57).

min
nr∑
i=1

ε2i ⇒ {∆p} =
(
[S]T[S]

)−1
[S]T{∆r?} (3.57)

Expression (3.57) is the most fundamental expression of sensitivity-based up-
dating and justifies the existence of relative and normalised sensitivities. The
sensitivity coefficients used in expression (3.52) are called absolute sensitivities.
These absolute sensitivities have a number of disadvantages for MNETs. First
of all, the residuals minimised in expression (3.57) are the differences between
the absolute values of the desired and achieved model outputs. If improved
model parameters are estimated by using absolute response differences, the
least-squares minimisation will implicitly increase the importance of the out-
put quantities which have a high absolute value. In the case where resonant
frequencies are used as model output, this procedure results in a better match
of the frequencies of the higher order modes. To obtain a more balanced weight-
ing of the different output quantities, not the absolute response differences but
the relative response differences should be minimised. The desired response
changes should then be defined as
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∆ri =
rexp
i − rnum

i

rnum
i

(3.58)

To maintain the validity of expression (3.57) with this new definition of {∆r},
all the elements of the sensitivity matrix [S] have to be divided by the corre-
sponding response. The sensitivity coefficients thus have to be redefined as

sij =
∂ri
∂pj

1
rnum
i

(3.59)

The sensitivity coefficients as defined by expression (3.59) are called relative
sensitivities. As previously explained, the use of relative sensitivities ensures
the correct weighting of response quantities with a large difference in absolute
value. Note that relative sensitivities cannot be computed for quantities equal
to zero. However, this does not cause any problems in the case of vibration-
based MNETs since the responses are resonant frequencies.

Expression (3.57) also reveals another potential problem. The computation of
the optimal parameter changes requires the inversion of the product

(
[S]T[S]

)
.

The product of a matrix with its transpose has the same rank as the initial
matrix. This means that the sensitivity matrix may not be rank-deficient or
ill-conditioned. The identification procedures discussed in this text aim at the
estimation of the elastic properties of orthotropic materials, i.e. E1, E2, G12

and ν12. In absolute values, the elastic and shear moduli are about 10 orders
of magnitude larger than Poisson’s ratios. Since the parameters are in the de-
nominator of the sensitivity coefficients, the values of the sensitivity coefficients
of the elastic and shear moduli will be a few orders of magnitude lower than
the sensitivity coefficients of Poisson’s ratio. When grouping these sensitivity
coefficients into a sensitivity matrix, the resulting sensitivity matrix will be
severely ill-conditioned making the inversion of

(
[S]T[S]

)
highly susceptible to

numerical errors. To improve the conditioning of the sensitivity matrix, the
different sensitivity coefficients should have about the same order of magni-
tude. This can be achieved by multiplying the sensitivity coefficients with the
corresponding parameter value, so the sensitivity coefficients become

sij =
∂ri
∂pj

pj

1
(3.60)

The new sensitivity coefficients are called normalised sensitivities. To maintain
the validity of the updating expression (3.57) the elements of the parameter
correction vector have to be redefined as

∆pj =
pnew

j − pold
j

pold
j

(3.61)

To combine a well conditioned sensitivity matrix with a correct weighting of
the different model responses, normalised relative sensitivities should be used.
Normalised relative sensitivities are defined as
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sij =
∂ri
∂pj

pj

ri
(3.62)

They can be used in the sensitivity matrix of expression (3.57), if the response
and parameter difference vectors are defined as in (3.58) and (3.61), respec-
tively. From the discussion above, it is clear that the use of normalised relative
sensitivities is preferred. All sensitivities used in the remainder of the text
will be normalised relative sensitivities. For reasons of convenience, normalised
relative sensitivity coefficients will simply be called sensitivity coefficients.

3.2.5. Conclusions

The optimal approach to determine the sensitivity coefficients of resonant fre-
quencies of rectangular test specimens with respect to the material parameters,
is to compute the element sensitivities of one quarter of the sample using the
semi-analytical differential approach with a relative parameter perturbation of
10−4. On the other hand, the determination of the sensitivity coefficients with
respect to the sample’s length, width, and thickness must be computed with
the finite difference approach using a relative parameter perturbation of 10−3.
To improve the conditioning of the identification problem, the absolute sensi-
tivity coefficients of the resonant frequencies with respect to the elastic material
parameters should be transformed into normalised relative sensitivities.

3.3. Correlation Analysis

To update the finite element models of the test specimens, the numerical fre-
quencies have to be compared with the experimentally measured resonant fre-
quencies. To correctly update the model, every numerical frequency has to
be compared with the experimental resonant frequency of the same physical
mode. For example, the frequency of the numerical torsional mode has to be
compared with the experimental torsional frequency. But the order of the nu-
merical modes depends on the elastic properties of the numerical model, e.g.
an over- or underestimation of the shear modulus of a beam-shaped sample
can change the position of the fundamental torsional mode with respect to
the other modes. The order of the modes of the finite element model is thus
not necessarily the same as the order of the experimental modes, therefore the
frequencies cannot be compared sequentially.

3.3.1. The Modal Assurance Criterion

The modal assurance criterion (MAC) defines a correlation coefficient between
two mode shapes [72], and is commonly used to compare a set of numerical
mode shapes with a set of experimental mode shapes. For real mode shapes,
the modal assurance criterion is defined by

MAC
(
{ψ}num, {ψ}exp

)
=

(
{ψ}Tnum[W ]{ψ}exp

)2(
{ψ}Tnum[W ]{ψ}num

)(
{ψ}Texp[W ]{ψ}exp

) (3.63)
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where [W ] is a weighting matrix which is usually taken equal to the unity or
mass matrix11. If the two mode shapes are the same, upon a scaling factor, the
MAC value equals 1. If there is absolutely no linear relation between the two
considered mode shapes, the MAC value equals 0. If two mode shape sets are
compared, the MAC value is computed for every mode combination and the
obtained MAC values can be arranged into a MAC-matrix.

3.3.2. Automatic Mode Recognition

The specimens considered in this text have simple shapes such as rectangu-
lar beams or plates. Therefore, the mode shapes are a priori known and it is
possible to specify a number of predefined mode shape types, e.g. the funda-
mental flexural mode. This implies that it is not necessary to actually measure
the experimental mode shapes, it just has to be known with which predefined
mode type each experimental resonant frequency is associated. The numerical
frequencies will also have to be associated with one of these predefined mode
types, which means that vibration-based material identification routines re-
quire an automatic mode shape recognition algorithm. Such a routine consists
of three basic steps: building a database with reference mode shapes, defining
the node-point pairs, and determining the mode shape pairs.

Reference Mode Shapes

For every predefined mode type, a reference mode shape should be generated.

(a) The first flexural mode. (b) The first torsional mode.

Figure 3.15: Two reference mode shapes for a beam-shaped specimen.

The grid of these reference mode shapes can be quite coarse, but has to be fine
enough to capture the general deformation pattern of the considered modes.
Figure 3.15 presents two examples of reference mode shapes for a beam-shaped
specimen. All the reference mode shapes are stored in a database according to
a well-defined order.

Node-Point Pairs

The second step consists of finding the node-point pairs. Each pair combines
a point of the reference grid with the closest finite element node. In theory,
the application of the MAC requires the modal displacement of the two modes
in the same location. However, the locations of the points and nodes do not
always coincide. For automatic mode recognition purposes, an approximation

11In case of a structure with a homogeneous mass distribution, there is no significant
difference between a MAC value computed with a weighting matrix equal to the unity or
mass matrix.
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by taking the closed node to each considered point suffices and an interpolation
of the nodal displacements is not necessary.

Figure 3.16: The node-point pairs.

Mode Shape Pairs

The last step consists of computing the MAC values between the numerical
mode shapes and the mode shapes stored in the reference database. The com-
binations that result in the highest MAC-values are the mode shape pairs.
Since the mode shape type of the reference modes are known, the mode type
of the numerical modes is identified.

Figure 3.17: A mode shape pair.

3.3.3. Conclusions

It is possible to develop an automatic mode shape recognition algorithm. The
type of a particular vibration mode can be identified by comparing the mode
shape of the considered vibration mode with a set of reference mode shapes
using the modal assurance criterion.

3.4. Summary

This chapter introduced the three mathematical tools needed in the numerical
part of a vibration-based MNET procedure: finite element modelling, sensitiv-
ity analysis and correlation analysis. The theory of finite element modelling
was briefly reviewed, while the use of finite element modelling in vibration-
based material identification was evaluated and discussed more in detail. The
part on sensitivity analysis introduced the theoretical foundation of sensitivity



58 3.4. SUMMARY

analysis and derived the formulas of the semi-analytical differential approach to
compute the sensitivity coefficients of the resonant frequencies of a vibrating
structure. These formulas where then optimised for the computation of the
sensitivity coefficients of beam- and plate-shaped test specimens. With the use
of correlation analysis, a mode shaped recognition algorithm was developed in
order to determine the mode type of the numerical modes in an automated
way.



4
Optimisation Theory

Optimisation theory is a fundamental part of mixed numerical-
experimental techniques. MNETs focus on estimating the values
of physical parameters by comparing the data measured during an
experiment with the responses of a numerical simulation of the ex-
periment. The simulation results are controlled by a set of model
parameters with unknown but ‘tunable’ values. It is assumed that
the correct values of the physical properties under investigation cor-
respond with the values of the model parameters resulting in the
optimal match between the responses of actual and simulated ex-
periment. The unknown parameter values can thus be identified
by solving the optimisation problem that minimises the difference
between the measured and simulated responses.
This chapter does not provide a general overview of optimisation
theory, it only presents the theory needed to solve the MNET op-
timisation problem in an efficient way. It is assumed that the cost-
function is the sum of the squared differences between the measured
and calculated responses. The domain of the cost-function is con-
sidered to be the full n-dimensional real space; possible bounds on
the search space are implemented with inequality constraints.
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4.1. Introduction

The goal of optimisation theory is to provide procedures that can find the
optimal solution to a particular mathematical problem. The optimal solution
can only be defined, if there is an objective criterion to compare the optimality
of two different solutions. Such a criterion is obtained by defining a cost-
function that assigns a scalar value to every possible solution. Conventionally,
cost-functions are chosen in such a way that the better solutions correspond
with lower cost-function values. By using this convention, the quest of finding
the optimal solution can mathematically be expressed as the problem of finding
the minimum of the cost-function.

minimise f0(x) {x} ∈ Rn

x

subject to fi(x) 6 0 i = 1, . . . , r
hi(x) = 0 i = 1, . . . , s

(4.1)

The notation of equation (4.1) is called the standard form [73] and describes
the problem of finding the location {x} that minimises f0(x) among all feasible
points. A point {x} is called feasible, if it satisfies all the conditions fi(x) 6 0
and hi(x) = 0. The function f0 : Rn→R is the cost-function and the vector
{x} ∈ Rn is called the optimisation variable. The inequalities fi(x) 6 0 are
called inequality constraints, and the corresponding functions fi(x) : Rn→R
are called inequality constraint functions. The equalities hi(x) = 0 are called
equality constraints and the corresponding functions hi(x): Rn→R are called
equality constraint functions. If there are no constraints, the problem is said
to be unconstrained.

4.1.1. Global and Local Minima

One of the major issues in optimisation theory is the presence of local minima.
A global minimum is a point x? for which the cost-function has the lowest
value over its domain or x? 6 x, ∀x ∈ domf0. A local minimum is a point for
which there is a neighbourhood where the value of the cost-function is higher
than at the local minimum, however the value of the cost-function at the local
minimum is higher than the cost-function value at the global minimum. Figure
4.1 presents a one-dimensional example of a function with a local minimum.

x

f0(x)

Global minimum

Local minimum

Figure 4.1: A one-dimensional optimisation problem with a local minimum.

Proving the absence of local minima is a highly complicated task. The prob-
lem is usually tackled in an indirect way by proving that the cost-function
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is convex, since convexity implies the absence of local minima. Proving the
convexity of the cost-function is an important step in solving an optimisation
problem. In fact, “the great watershed in optimisation is not between linearity
and non-linearity, but between convexity and non-convexity” [74]. However, the
importance of convexity must not be overrated, since convexity is a very severe
criterion. Convexity implies the absence of local minima, yet non-convexity
does not imply the presence of local minima. Section 4.3 presents a more
detailed discussion on convexity.

4.1.2. MNETs and Optimisation

The optimisation techniques used in mixed numerical-experimental techniques
must meet a number of special requirements.

First of all, the cost-function of an MNET describes the difference between the
measured and simulated responses. This means that every evaluation of the
cost-function requires the solution of a finite element model, or a number of
finite element models in case of an identification routine with multiple sam-
ples. The evaluation of the cost-function is thus a very time-consuming step.
To identify the parameters in an efficient way, the number of cost-function
evaluations has to be kept as low as possible.

With MNETs, the goal of the optimisation step is to identify the unknown
values of a number of model parameters. Since these model parameters repre-
sent actual physical parameters, the optimisation problem must have a unique
solution. According to the identifiability condition [75], a unique solution can
only be obtained if the sensitivity matrix is non-singular. Furthermore, an
MNET has to be robust with respect to measurement noise. A small change
of the output responses should not result in a significant change of the identi-
fied parameters. Therefore, the minimum of the cost-function has to be well
pronounced, i.e. it cannot lie in a valley characterized by long, narrow contour
lines [75]. Mathematically, this requires a well-conditioned sensitivity matrix,
i.e. a matrix with linearly independent columns. Figure 4.2 graphically repre-
sents the difference between a well and an ill-conditioned problem. Since an
MNET must provide a unique solution, its optimisation algorithm does not
have be able to handle singular or ill-conditioned problems. In these two cases,
the MNET has to be redesigned instead of being solved, because it can never
provide a reliable estimate of the unknown parameter values.

p1

p2

(a) Well-conditioned problem.

p1

p2

(b) Ill-conditioned problem.

Figure 4.2: A problem with three response quantities and two parameters.
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4.1.3. Overview of the Optimisation Techniques

Zero-Order Methods

Strictly spoken, zero-order or direct search methods are techniques that use
a sequential examination of trial solutions involving comparison of each trial
solution with the ‘best’ obtained up to that time, together with a strategy
for determining, as a function of earlier results, what the next trial solution
will be [76]. However, this text uses a more flexible definition. Here, direct
search methods are defined as ‘derivative-free’ techniques that exclusively rely
on values of the cost-function to solve the optimisation problem.

First-Order Methods

The gradient of a function at a particular point represents the direction per-
pendicular to the tangent hyperplane at the considered point. The gradient
thus provides information about the behaviour of the function in the vicinity
of the working point. Using gradient information, it is possible to determine
the direction in which the function is descending the most. Since the gradient
is based on a linear approximation, it only provides information about the di-
rection in which the function is decreasing, it does not provide any information
about the distance to the minimum.

Second-Order Methods

The combination of first and second-order derivatives provides a local parabolic
approximation of the cost-function. Such a second-order approximation does
not only provide a direction in which the cost-function decreases, it also gives
an estimate of the distance to the minimum, as illustrated in figure 4.3(b).
Derivative-based methods are usually iterative descent methods [73]. In these
methods, each iteration step combines two actions: 1) finding a direction in
which the cost-function decreases, 2) reducing the value of the cost-function by
taking a step in the chosen direction. As such, the cost-function is gradually re-
duced until the minimum is found. The use of higher-order information usually
leads to a substantial reduction in the number of iteration steps, and thus the
number of cost-function evaluations. But the derivative-based methods also
have a number of important disadvantages, e.g. they require the computation
of the cost-function derivatives.

x

f0(x)

f̂0(x)

?

(a) First-order methods.

x

f0(x)

f̂0(x)∆x

(b) Second-order methods.

Figure 4.3: Representation of the higher-order optimisation methods.
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4.2. Zero-Order Methods

This section discusses three zero-order techniques that are commonly used to
solve inverse problems: simplex methods, genetic algorithms and neural net-
works. The principal goal of this discussion is to present the basics of these
three methods and to assess whether these techniques are suitable to solve
vibration-based material identification problems.

4.2.1. Simplex Methods

A simplex is a geometric figure that has a number of vertices, i.e. corners, equal
to the number of dimensions of the considered space plus one [77]. So, in an
n-dimensional space a simplex is defined by n+1 points. Figure 4.4 presents
the shapes of a simplex in a one-, two- and three-dimensional space.

a
b

c

Figure 4.4: Simplexes in a one-dimensional (a), two-dimensional (b) and
three-dimensional (c) space.

Simplex-based optimisation methods start by defining one simplex in the pa-
rameter space and the computation of the value of the cost-function in all the
vertices of this simplex. In the next step, the simplex is shifted to an adjacent
but optimal zone of the parameter space. With traditional simplex methods,
this is achieved by performing a reflection operation on the initial simplex. A
reflection operation moves the vertex that corresponds with the highest value of
the cost-function by projecting it through the centre of gravity of the remaining
vertices, i.e. the centroid. The result of the reflection operation is graphically il-
lustrated in figure 4.5. In this figure, the old simplexes are plotted with dashed
lines, the new simplexes with full lines, and the centroids are indicated by
open circles. The value of the cost-function is evaluated in the new vertex and
compared with the cost-function values of the old vertices. The worst vertex
is identified and the new simplex is shifted with a new reflection move. This
process is repeated until the solution has converged. The described procedure
is called the ‘fixed-size simplex’ method and was introduced by Spendley, Hext
and Himsworth [78].
To improve the performance of this procedure, Nelder and Mead [79] added
two additional simplex operations: expansion and contraction. In expansion,
the distance between the new vertex and the centroid is twice as large as with
the reflection operation. In contraction, the distance between the new vertex
and the centroid is half the distance of the reflection operation. There are two
types of contractions, the first type keeps the new vertex on the same side as
the reflection vertex, the second type flips the new vertex to the opposite side of
the reflection vertex. All the possible operations of the Nelder-Mead procedure
are represented in figure 4.5.
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Reflection Expansion Contraction

Vertex of the initial simplex

Vertex of the new simplex
Centroid

Vertex after reflection

Figure 4.5: The reflection, expansion and contraction operations of the
Nelder-Mead algorithm.

The Nelder-Mead algorithm is basically identical to the previously described
fixed-size simplex algorithm, except from a small difference: at each step, a set
of logical rules will decide which of the four possible simplex operations has to
be used to create the new simplex. The Nelder-Mead simplex algorithm has
become an extremely popular optimisation algorithm. Of all the direct search
methods, the Nelder-Mead simplex algorithm is the most commonly used in
numerical software packages [80]. Note that the expansion and contraction
operations change the size of the simplex, therefore the Nelder-Mead algorithm
is also called the ‘variable-size simplex’ method.

4.2.2. Genetic Algorithms

Genetic algorithms are optimisation techniques based upon the natural process
of evolution [81]. The optimum is found with a stochastic but directed search,
based on the principles of population genetics according to Darwin’s principal
of survival of the fittest.
In most genetic algorithms, the parameters are represented by finite-length
binary-coded strings. For multi-parameter optimisation problems, the individ-
ual parameter codes are concatenated into a single string, which then represents
a unique point in the parameter space of the problem. Figure 4.6 depicts the
binary representation of a point in an n-dimensional parameter space where
each parameter is encoded with an eight bit sequence.

... 000000000000 111111111111
︸ ︷︷ ︸

x1

︸ ︷︷ ︸

x2

︸ ︷︷ ︸

xn

Figure 4.6: Binary-coded representation of a point in n-dimensional space.
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The optimisation process starts by randomly selecting a number of points in
the search space. The selected points are called individuals, and the collection
of all these points is called the initial population. The first step evaluates the
whole population by means of the fitness function. The fitness function, which
is the inverse of the traditional cost-function, assigns a value to each individual
of the population and allows to compare the quality of the different individuals.
Because it is highly unlikely that the best individual of the initial population
represents the optimal point in the search space, a new population has to be
created and evaluated. By using the genetic information of the elite individuals
of the current population, it should be possible to create a new population with
improved fitness properties. The selected parents can produce offspring in three
different ways: crossover, transfer and mutation.

00

00000

0

00000

000 11

111

111

111

11111Parent 1

Parent 2

Offspring 1

Offspring 2

︷ ︸︸ ︷

︷ ︸︸ ︷︷ ︸︸ ︷

︷ ︸︸ ︷

︸ ︷︷ ︸ ︸ ︷︷ ︸

︸ ︷︷ ︸︸ ︷︷ ︸

Figure 4.7: Multipoint crossover.

The crossover mechanism uses the genetic information of two parents to create
the offspring. There are different ways to combine the parent’s genetic informa-
tion. One possible way is to exchange randomly selected substrings between the
two parents. This mechanism is called multipoint crossover and is illustrated
in figure 4.7. Another possible way is to create the offspring’s binary code by
copying the corresponding bit from one of the parents with equal probability.
This mechanism is called uniform crossover and is illustrated in figure 4.8.

00000

00

000

111

111111

11111Parent 1

Offspring

Parent 2

0000

000

1111

11111Parent

Offspring

Figure 4.8: Uniform crossover. Figure 4.9: Mutation.

Transfer is the second reproductive mechanism. With this mechanism the
genetic information of some of the elite individuals of the population is directly
transferred to the new population, which means that the offspring are exact
‘clones’ of the parents.
Mutation is a sort of alternative reproductive mechanism. A mutant is obtained
by randomly changing information in the genetic sequence of its parent. The
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mutation mechanism is usually implemented by changing a randomly selected
bit of the binary sequence as shown in the example of figure 4.9.
Once the new population is created, the individuals can be evaluated with the
fitness function. This process is repeated until the solution has converged.

4.2.3. Neural Networks

Neural networks [82,83] are no genuine optimisation techniques like the simplex
methods or genetic algorithms, however they can be applied to solve inverse
problems by only using direct function evaluations. Neural networks are uni-
versal function approximators and can thus be used to approximate the output-
input relation of the initial model. Once this output-input relation is defined,
the inverse problem can be solved by inserting the desired model output into
the neural network.

Input layer Hidden layers

︸ ︷︷ ︸

Output layer

...
...

...
...

...

Figure 4.10: A neural network with three hidden layers.

A neural network is a computational model that consists of a set of hidden-
layer neurons that connect the network’s input parameters with the output
parameters. Figure 4.10 presents the general structure of a neural network.
At every neuron, the inputs are weighted and summed. The obtained sum is
then inserted into the activation function f to produce the neuron output yk.
Figure 4.11 provides the general structure of a neuron.

...

∑
f( )

wk,1

wk,2

wk,n

yk

x1

x2

xn

Figure 4.11: The neuron model.

The neural network architecture, figure 4.10, provides only the general form of
the network’s input-output relation. For every neuron, the user has to specify
the weights wi and the activation function f . The choice of the activation func-
tions is usually based on the physics of the considered problem. The weights
wi are determined by training the network using a pool of training samples
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that are generated with the direct model. This training pool groups a num-
ber of input parameters with their corresponding output values. The training
pool represents the input-output relation of the initial model in an implicit and
sampled form. During the iterative training process, the neuron weights wi are
tuned in such a way that the network reproduces the input parameter sets of
the training pool from the output value sets in an optimal way1.
The trained neural network provides an optimal fit of the response surfaces
of the initial model, and the inverse problem can be solved by inserting the
desired model output into the neural network.

4.2.4. Conclusions

The main advantage of the zero-order methods is that no derivative information
like gradients or Hessians is required, which means that the implementation of
the optimisation algorithm does not depend on the cost-function. Therefore,
it is quite easy to implement these techniques in general purpose optimisation
codes. As a result, the zero-order techniques have become very popular. But
the theoretical discussion on zero-order methods raises the suspicion that the
zero-order methods might require a large number of cost-function evaluations
to find the optimum. This would be a serious disadvantage, since the evaluation
of the MNET cost-function involves solving one or more FE-models.
There is a substantial number of publications that discusses the estimation of
material parameters based on zero-order techniques. Applications of vibration-
based elastic material parameter identification using the simplex method can
be found in [84], applications using a genetic algorithm can be found in [33,
37, 85, 86] and applications that use neural networks can be found in [86–88].
Comparing the efficiency of the various zero-order methods from the results
presented in these references is not straightforward, mainly because every pub-
lication considered a particular set-up. Furthermore, most references did not
explicitly mention the number of cost-function evaluations required to find the
minimum. However, references [33] and [86] considered the same test configu-
ration. Both references used a laminated glass-epoxy plate of 200×200×5 mm.
The considered laminate was made with 12 equal layers and had the following
stacking sequence: [0/+45/-45/90/-45/+45]s. Table 4.1 presents the in-plane
elastic properties of the glass-epoxy layers.

Table 4.1: The in-plane elastic properties of the glass-epoxy [33,86].

E1 [GPa] E2 [GPa] G12 [GPa] ν12 [–]
38.48 9.38 3.41 0.292

Reference [33] presented results obtained with a genetic algorithm, while refer-
ence [86] presented results obtained with both a genetic algorithm and a neural
network. To complete the comparison of the zero-order methods, the problem
was also solved with the Nelder-Mead simplex algorithm and with the higher-
order method that will be presented in section 4.6. Table 4.2 gives an overview

1The output of the initial model is the input of the neural network and vica versa.
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of the obtained results. Apparently, the genetic algorithms required a very
high number of direct function evaluations, while the residuals were about 1 %.
The simplex algorithm found the correct material parameters but required a
substantial number of FE-calculations. The neural network approach required
only one third of the function evaluations of the simplex algorithm but resulted
in residuals with an average magnitude of 0.13%. Using derivative information,
the correct solution could be identified with only 8 FE-model evaluations. This
is about 14 times less than the number of FE-model evaluations of the optimal
zero-order technique, i.e. the neural network approach.

Table 4.2: Comparison of the zero-order methods.

Number of FE E1 E2 G12 ν12

evaluations (38.480) (9.380) (3.410) (0.292)
value 38.340 9.240 3.480 0.293GA2 3001
error 0.364 % 1.493 % 2.053 % 0.342 %
value 38.908 9.281 3.326 0.279GA3 600
error 1.112 % 1.055 % 2.463 % 4.452 %
value 38.480 9.380 3.410 0.292NMS4 323
error 0.001 % 0.001 % 0.003 % 0.006 %
value 38.486 9.389 3.409 0.291NN5 110
error 0.017 % 0.101 % 0.021 % 0.362 %
value 38.480 9.380 3.410 0.292HO6 8
error 0.000 % 0.000 % 0.001 % 0.001 %

[GPa] [GPa] [GPa] [–]

2 3 4 5 6 One may conclude that zero-order methods are powerful optimisation tech-
niques. However, the example presented above demonstrates that the zero-
order techniques require too many cost-function evaluations and are, therefore,
not the proper class of techniques to solve the optimisation problem of the
vibration-based MNET procedures.

4.3. Basic Concepts of Convex Optimisation

Proving that a cost-function does not have any local minima is a case-dependant
matter. Since convex functions do not have local minima but only one global
minimum, the absence of local minima is usually proven in an indirect way,
by showing that the cost-function is convex. This section introduces the basic
concepts of convex optimisation and is mainly based on the theoretical part
of [73].

2Genetic algorithm, the results as published in [33].
3Genetic algorithm, the results as published in [86].
4Nelder-Mead simplex, using the implementation of MATLAB which is based on [89].
5Neural network, the results as published in [86].
6Higher-order method, using the routine described in section 4.6.
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4.3.1. Convex Sets

A set C is convex, if the line segment between any two points of C lies in C.
This implies that for any x1 and x2 ∈ C(

θx1 + (1− θ)x2

)
∈ C (4.2)

and this for all θ ∈ [0, 1]. Roughly spoken, a set is convex if every point in
the set can be seen by every other point along an unobstructed straight path
between them, where ‘unobstructed’ means lying in the set [73]. Figure 4.12
presents an example of both a convex and a non-convex set.

(a) A convex set. (b) A non-convex set.

Figure 4.12: An example a convex and a non-convex set.

4.3.2. Convexity

A function f : Rn→R is convex if its domain is a convex set and if expression
(4.3) holds for all {x}, {y} ∈ domf , and this for all θ ∈ [0, 1].

f
(
θx+ (1− θ)y

)
6 θf(x) + (1− θ)f(y) (4.3)

Geometrically, inequality (4.3) implies that the chord connecting
(
x, f(x)

)
with(

y, f(y)
)

must lie above the graph of f . This principle is illustrated in figure
4.13.

Convex Non-Convex with Non-Convex without
a local minimuma local minimum

Figure 4.13: Graphical representation of the definition of convexity.

If function f is continuously differentiable on its domain, then f is convex if
domf is a convex set and if inequality (4.4) holds for all {x}, {y} ∈ domf .

f(y) > f(x) + {∇f(x)}T ({y} − {x}) (4.4)

Expression (4.4) is called the first-order convexity condition and can be derived
from (4.3) as shown in [73]. Figure 4.14 provides a graphical interpretation of
this convexity condition.



70 4.4. UNCONSTRAINED OPTIMISATION

f(y)

f(x) + {∇f(x)}T({y} − {x})

x y

Figure 4.14: Graphical interpretation of the first-order convexity condition.

If f is twice continuously differentiable on its domain, then (4.3) can be trans-
formed into the following second-order convexity condition [73]: the function
f is convex, if domf is a convex set and if its Hessian is positive semi-definite.

4.3.3. Optimality Condition

Reference [73] proves that the vector {x?} is the optimal solution of a convex
optimisation problem, if and only if {x?} is a feasible point for which

{∇f0(x?)}T({y} − {x?}) > 0 (4.5)

and this for all feasible y. Note that (4.5) implies that a convex cost-function
can have more than one minimum, as shown on figure 4.15. However, a convex
cost-function cannot have any local minima, since this would conflict with the
convexity condition (4.4).

minimum

f0(x)

x

Figure 4.15: A convex function with a non-unique minimum.

4.4. Unconstrained Optimisation

Unconstrained optimisation focuses on solving the following problem

minimise f0(x) {x} ∈ Rn

x
(4.6)

In this section, it will be assumed that the cost-function f0(x): Rn→R is convex
and twice continuously differentiable.

4.4.1. Optimality Condition

According to section 4.3.3, convexity of the cost-function f0 implies that
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f0(y) > f0(x) + {∇f0(x)}T({y} − {x}) (4.7)

for any {x}, {y} ∈ domf0. If the cost-function f0 attains its minimal value
in {x?} then f0(y) > f0(x?) for all {y} ∈ domf0. The combination of this
inequality with the inequality of equation (4.7) yields

{∇f0(x?)}T({y} − {x?}) 6 0 (4.8)

Furthermore, according to the general optimality condition (4.5) the solution
{x?} is only optimal if

{∇f0(x?)}T({y} − {x?}) > 0 (4.9)

The conditions (4.8) and (4.9) can only be met for all {y} ∈ domf0 if the
gradient ∇f0(x) equals zero. So, if f0 is differentiable, a necessary and sufficient
condition for a point {x} to be the optimal solution {x?} is

{∇f0(x?)} = {0} (4.10)

Solving the unconstrained minimisation problem (4.6) is thus the same as find-
ing the solution of (4.10), which is a set of n equations of the n variables
{x1}, . . . , {xn}. In a few special cases, the problem (4.10) can be solved in
an analytical way, but for an arbitrary convex cost-function the problem has
to be solved with an iterative algorithm that computes a sequence of points
{x(0)}, {x(1)}, . . . ∈ domf0, where f0

(
x(k)

)
→ f?

0 as k →∞.

4.4.2. Analytical Solutions

A number of unconstrained optimisation problems can be solved analytically.
These analytical solutions do not only provide a computationally efficient re-
sult, some of these solutions also form the foundation for the more advanced
numerical optimisation methods.

The Linear Least-Squares Problem

Consider a set of m independent, linear equations of the n unknowns {x1}, . . . ,
{xn}.

[A]{x} = {b} (4.11)

When the number of equations m equals the number of unknowns n, a unique
solution to the set of equations (4.11) exists. In the more general case, where
the number of equations m exceeds the number of unknowns n, a vector {x}
that satisfies the set of equations no longer exists. This implies that there is
no exact solution to (4.11), or that

[A]{x} − {b} = {ε}, ∀{x} ∈ Rn (4.12)

in which {ε} ∈ Rm contains the residuals.
However, in this case, a quasi or optimal solution [90] can be defined as the
vector {x?} that satisfies the m equations as well as possible, according to a
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particular criterion. The most popular criterion in engineering applications is
the least-squares criterion, which states that the optimal solution is the solution
that minimises the sum of the squared residuals, or mathematically

minimise
m∑

i=1

ε2i or minimise
∥∥{ε}∥∥2

x x
(4.13)

where ‖�‖ denotes the Euclidean norm. By substituting (4.12) into (4.13) the
least-squares solution to (4.11) can be expressed as

minimise
∥∥[A]{x} − {b}

∥∥2

x (4.14)

Expression (4.14) is the standard form of the linear least-squares minimisation
problem. The cost-function of (4.14) can be expressed in matrix form as

fls =
∥∥[A]{x} − {b}

∥∥2

= {x}T[A]T[A]{x} − 2{b}T[A]{x}+ {b}T{b}
(4.15)

Convexity — In order to be convex, the least-squares cost-function has to
comply with the first-order convexity condition (4.4). This convexity condition
can be rewritten as

fls(y)− fls(x)− {∇fls(x)}T({y} − {x}) > 0 (4.16)

The substitution of (4.15) into the left-hand side of (4.16) provides

{y}T[A]T[A]{y} − 2{b}T[A]{y}+ {b}T{b} − {x}T[A]T[A]{x}+
2{b}T[A]{x} − {b}T{b} −

(
2[A]T[A]{x} − 2[A]T{b}

)T({y} − {x}) > 0
(4.17)

By adding up the corresponding terms, expression (4.17) can be simplified to

{x}T[A]T[A]{x} − 2{x}T[A]T[A]{y}+ {y}T[A]T[A]{y} > 0 (4.18)

which can be contracted to(
[A]{x} − [A]{y}

)2

> 0 (4.19)

that proves the convexity of the least-squares cost-function.
Optimality — The least-squares cost-function fls is quadratic, and thus a
continuously differentiable function. According to the optimality condition
(4.10), the minimum will be attained in the point where the gradient equals
zero. The optimal point {x?} is thus found for

∇fls(x?
ls) = 2([A]T[A]){x?

ls} − 2[A]T{b} = {0} (4.20)

so

{x?
ls} =

(
[A]T[A]

)−1[A]T{b} (4.21)
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or

{x?
ls} = [A]†{b} (4.22)

where [ � ]† denotes the Moore-Penrose pseudo inverse.

The Weighted Least-Squares Problem

In the previous section, all the residues εi had the same importance. However,
the importance of the match of the ith equation of (4.11), i.e. the importance of
εi, can be increased or decreased by using weighting factors. The cost-function
of this weighted least-squares problem can be written as

minimise
m∑

i=1

wiε
2
i or minimise {ε}T[W ]{ε}

x x
(4.23)

where the weighting matrix [W ] ∈ Rm×m is a diagonal matrix containing the
weighting factors wi. The introduction of (4.12) into (4.23) yields

minimise
(
[A]{x} − {b}

)T[W ]
(
[A]{x} − {b}

)
x (4.24)

As with the linear least-squares cost-function, the weighted least-squares cost-
function fwls is a twice continuously differentiable convex function. The opti-
mal point is thus the point where the gradient equals zero, or

∇fwls(x?
wls) = 2

(
[A]T[W ][A]

)
{x?

wls} − 2[A]T[W ]{b} = {0} (4.25)

or

{x?
wls} =

(
[A]T[W ][A]

)−1[A]T[W ]{b} (4.26)

The matrix [
√
W ] is the diagonal matrix that contains the square roots of the

weighting factors wi, therefore

[W ] = [
√
W ]T[

√
W ] (4.27)

By inserting (4.27) into (4.26), the latter can be rewritten as

{x?
wls} =

(
[
√
WA]T[

√
WA]

)−1[
√
WA]T{

√
Wb} (4.28)

By adopting the notations [Aw] = [
√
WA] and {bw} = {

√
Wb}, expression

(4.28) becomes

{x?
wls} = ([Aw]T[Aw])−1[Aw]T{bw} (4.29)

The solution of the weighted least-squares problem can thus be obtained with
the same algorithm as the solution of the standard least-squares problem, if [A]
and {b} are pre-multiplied with the square root of the weighting matrix [W ].
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The Regularised Tychonov and Bayesian Formulation

The regularised Tychonov (4.30) and the Bayesian (4.31) cost-functions are
two other least-squares formulations that are commonly used to solve inverse
problems [90].

minimise
m∑

i=1

ε2i + δx2
i or minimise ‖{ε}‖2 + δ ‖{x}‖2

x x
(4.30)

minimise
m∑

i=1

wri
ε2i + wpi

x2
i or minimise {ε}T[Wr]{ε}+ {x}T[Wp]{x}

x x
(4.31)

in which δ is a scalar weighting factor, [Wr] and [Wp] are the diagonal weighting
matrices of the responses and parameters, respectively. Expressions (4.32) and
(4.33) provide the optimal solution of these two cost-functions.

{x?
Tyc} =

(
[A]T[A] + δ[I]

)−1[A]T{b} (4.32)

{x?
Bay} =

(
[A]T[Wr][A] + [Wp]

)−1[A]T[Wr]{b} (4.33)

The solution of the least-squares problem (4.22) depends on the inverse of
the product [A]T[A]. The rank of this product equals the rank of matrix [A],
which means that the optimal solution is not defined if matrix [A] is rank
deficient. If [A] is ill-conditioned but not singular, the inverse of [A]T[A] can be
calculated, but will be very sensitive to numerical noise. The main advantage
of the regularised Tychonov and Bayesian formulation can be seen from the
expressions of the optimal solution. In both cases, a diagonal matrix is added
to the product [A]T[A], which has a positive influence on the conditioning of
the problem. The use of the regularised Tychonov and Bayesian formulation is
thus only beneficial for ill-conditioned problems. Since ill-conditioned MNETs
should be redesigned instead of solved, the regularised Tychonov and Bayesian
formulation are not useful for parameter identification problems. They are,
however, essential for solving conventional model updating problems.

4.4.3. Descent Methods

If is not possible to find an analytical solution for the minimum of an arbi-
trary cost-function. If there is no analytical solution, the optimisation prob-
lem has to be solved numerically. Descent methods [73, 91] are iterative al-
gorithms that can provide an accurate approximation of the minimum of an
arbitrary convex cost-function. They produce a minimising sequence of points
{x(0)}, {x(1)}, . . . ∈ domf0, for which f0

(
x(k+1)

)
< f0

(
x(k)

)
. This implies that

f0

(
x(k)

)
→ f?

0 as k →∞, or that {x(∞)} = {x?}. In the minimising sequence,
each point is obtained from the previous point as

{x(k+1)} = {x(k)}+ t(k){v(k)} (4.34)

where k denotes the iteration step. Geometrically, expression (4.34) has the
following interpretation. At the point defined by {x(k)}, a step with length
t(k) > 0 is taken in the direction defined by {v(k)}. If the vector {v(k)} rep-
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resents a descent direction, the cost-function is reduced. By considering the
convexity condition (4.4), the descent requirement

f0

(
x(k+1)

)
< f0

(
x(k)

)
(4.35)

can be reformulated as

{∇f0(x(k))}T{v(k)} < 0 (4.36)

If the search direction {v(k)} meets requirement (4.36), it is a descent direction
and the working point {x(k)} is shifted in the direction of the optimal solution.
To summarise, a descent method converges to the optimal point by alternating
between two subroutines: the computation of a proper descent direction {v},
and the selection of an appropriate step size t. Figure 4.16 presents the general
flowchart of a descent method.

Current working pointStarting point

Determine search direction

Determine step size

Convergence ?
Yes No

Optimum

Figure 4.16: The general flowchart of a descent method.

First-Order or Gradient Descent Methods

First-order descent methods only use gradient information, i.e. first-order deriv-
atives, to minimise the cost-function. The first step of these methods is the
choice of the search direction. The most natural choice of the search direction
is the direction defined by the negative gradient. Note that the negative gradi-
ent direction complies with (4.36), and is thus a valid descent direction. Apart
from the most obvious choice, the negative gradient is also the optimal choice7,
at least in the situation where only first-order derivatives are available.
The second step of gradient descent methods is the selection of an appropriate
step size. The optimal step is the step that shifts the working point to the
minimum of the cost-function along the ray defined by the search direction, as
illustrated by figure 4.17. The selection of the step size can be thus be defined
as the one-dimensional optimisation problem

minimise φ(α)
α (4.37)

7The proof of this statement is presented on page 78.
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where φ is the cost-function reduced to the ray defined by the search direction,
and α is the coordinate along this ray as shown in figure 4.17. This means
that descent methods will solve a multi-dimensional optimisation problem by
replacing it by a sequence of one-dimensional optimisation problems. Since
they search the minimum of the cost-function along a line, the algorithms used
to solve the problem (4.37) are called line search algorithms.

φ

α

Figure 4.17: Line search: the transformation of a multi-dimensional optimi-
sation problem into an one-dimensional optimisation problem.

Solving a one-dimensional optimisation problem is thus a key step in solving
multi-dimensional optimisation problems. The availability of fast and stable
procedures to solve one-dimensional optimisation problems is, therefore, essen-
tial for the practical use of descent methods. Line search algorithms can be
divided into two classes: exact and inexact algorithms [73]. Exact line search
algorithms calculate the absolute minimum of the cost-function. In most cases,
the computation of the exact minimum is a time consuming operation, while it
is possible to obtain a – rough – approximation of the minimum with a much
smaller computational effort. Line search algorithms that only approximate
the minimum are called inexact. Because of the much lower computational
cost, most practical optimisation algorithms use inexact line search methods,
such as the backtracking technique [73]. An overview of a number of exact
and inexact line search algorithms can be found in [91]. Note that the be-
haviour of the line search algorithms heavily depends on the properties of the
cost-function. The choice of the best line search algorithm is thus unique for
each optimisation problem, and should be made after comparing the proper-
ties of the cost-function with the (dis)advantages of the different line search
algorithms.

Second-Order Descent Methods

The main disadvantage of the gradient descent method is the computational
inefficiency caused by the slow convergence rate. However, the convergence
rate can be drastically increased by using second-order derivatives or curva-
ture information. Newton’s method is the basic second-order descent method.
The Newton search direction {vnt} is derived from the second-order Taylor
approximation f̂0(v) of the cost-function at the working point {x}.

f0(x+ v) ≈ f̂0(v) = f0(x) + {∇f0(x)}T{v}+
1
2
{v}T

[
∇2f0(x)

]
{v} (4.38)
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The descent direction used by Newton’s method is the direction that min-
imises this second-order approximation. The choice of the descent direction
is thus based on both gradient and curvature information. According to the
unconstrained optimality condition (4.10), the minimiser {v?} of the quadratic
cost-function of (4.38) is found by

{∇f̂0(v?)} = {∇f0(x)}+
[
∇2f0(x)

]
{v?} = {0} (4.39)

or

{vnt} = −
[
∇2f0(x)

]−1 {∇f0(x)} (4.40)

The vector {vnt} is called the Newton step for cost-function at {x}. Note that
the positive definiteness of the Hessian

[
∇2f0(x)

]
implies that

{∇f0(x)}T{vnt} = −{∇f0(x)}T
[
∇2f0(x)

]−1 {∇f0(x)} < 0 (4.41)

unless {∇f0(x)} = {0}, which shows that the Newton step {vnt} complies with
(4.36) and proves that the Newton step provides a descent direction as long as
{x} is not the optimal point.

As shown in figure 4.18, the Newton step {vnt} can be interpreted as the dif-
ference between the minimiser of the approximated cost-function f̂0(v) and the
working point {x}. So, the Newton step does not only indicate an appropriate
search direction, it also provides a suitable step length.

f̂0(v)

f0(x)

x x + vnt

Figure 4.18: The cost-function f0(x) and its second-order approximation

f̂0(v).

To minimise a cost-function with Newton’s method, one must use the Newton
step {vnt} as descent direction in the flowchart of figure 4.16. A pure Newton
method uses a step size of one and does not require a line search algorithm,
a quasi Newton method uses a line search algorithm to improve the step size.
Note that in case of a quadratic cost-function, e.g. a least-squares cost-function,
the approximation f̂0(v) equals the actual cost-function. As a consequence,
Newton’s method minimises the least-squares cost-function in a single iteration
step.
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Unified Formulation for First and Second-Order Methods

To conclude the section on unconstrained optimisation, consider the following
unified formulation [91] for the search direction of the gradient descent method
and Newton’s method. The combination of equations (4.4), (4.35), and (4.36)
shows that if the reduction of the cost-function value between x(k) and x(k+1)

increases that then the value for the term {∇f0(x)}T{v} decreases. The optimal
search direction is thus the direction that minimises the product {∇f0(x)}T{v}.
Unfortunately, this does not provide the desired search direction because the
solution is not bounded. However, this problem can easily be overcome by
adding the requirement that the search direction must have a unit length. The
optimal search direction can thus be obtained as the solution of

minimise {∇f0(x)}T{v} ∀{v} | ‖{v}‖ = 1
v (4.42)

The solution of (4.42) depends on the definition of the norm used to measure
the length of the search direction vector {v}. One of the possible norms is the
general Euclidean norm which is defined as

‖{v}‖N =
√

({v}T[N ]{v}) (4.43)

where [N ] is a symmetric positive-definite matrix. Note that for [N ] = [I],
expression (4.43) becomes the definition of the standard Euclidean norm. Us-
ing a Lagragian function8, the constrained optimisation problem (4.42) can be
reformulated as the following unconstrained problem.

minimise {∇f0(x)}T{v}+ µ
(
{v}T[N ]{v} − 1

)
v (4.44)

The optimal solution, defined by the point where the gradient of the cost-
function of (4.44) becomes zero, equals

{v?} = − 1
2µ

[N ]−1{∇f0(x)} (4.45)

The value of the scaling factor µ is determined by the value chosen for the
norm in (4.42). Since the actual value of this norm is irrelevant, it can be
assumed that the value of the norm in (4.42) was chosen is such a way that it
corresponds with a scaling factor µ = 1

2 . In this way, equation (4.45) reduces
to

{v?} = −[N ]−1{∇f0(x)} (4.46)

When using the standard Euclidean norm [N ] = [I], the best downhill direction
equals the negative gradient, which proves that the negative gradient is the
optimal search direction, in case only gradient information is available. If the
Hessian matrix is used as metric of the generalized Euclidean norm, the optimal
search direction becomes −

[
∇2f0(x)

]−1 {∇f0(x)}, which is the search direction
of Newton’s method.

8The use of the Lagrangian function to solve constrained optimisation problems is dis-
cussed in section 4.5.
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4.5. Constrained Optimisation

In constrained optimisation problems, the values of the optimisation parame-
ters are restricted by a number of equality or inequality constraints. Con-
strained optimisation thus focuses on solving the following problem.

minimise f0(x) {x} ∈ Rn

x

subject to fi(x) 6 0 i = 1, . . . , r
hi(x) = 0 i = 1, . . . , s

(4.47)

It will be assumed that the cost-function f0(x) : Rn→R, and the constraint
functions fi(x): Rn→R and hi(x): Rn→R are convex and twice continuously
differentiable. Both equality- and inequality-constrained optimisation problems
are solved using the same strategy: reformulating the constrained problem as
an unconstrained problem.

4.5.1. Optimality Conditions

Equality-Constrained Problems

If the cost-function is only subjected to equality constraints, the problem is
called an equality-constrained optimisation problem. In this case, the general
constrained optimisation problem (4.47) reduces to

minimise f0(x) {x} ∈ Rn

x

subject to hi(x) = 0 i = 1, . . . , s
(4.48)

where s < n to assure the existence of a solution to the posed problem. The
equality-constrained optimisation problem (4.48) can be reformulated [91] as
an unconstrained problem using a Lagrange function

L(x, η) = f0(x) +
s∑

i=1

ηihi(x) (4.49)

in which ηi is the Lagrange multiplier of the ith constraint. The summation
terms ηihi(x) can be seen as penalty functions, since they increase the value
of the cost-function, if the considered constraint is violated. Because L(x, η) is
an unconstrained function, the optimal solution must comply with (4.10), so

∇L(x?, η?) = 0 (4.50)

or

∂L
∂xj

=
∂f0(x?)
∂xj

+
s∑

i=1

η?
i

∂hi(x?)
∂xj

= 0 j = 1, . . . , n

∂L
∂ηi

=hi(x?) = 0 i = 1, . . . , s

(4.51)

Solving this set of n+ s equations provides the optimal solution {x?} together
with the corresponding values of the Lagrange multipliers {η?}. Note that the
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second equation of the optimality conditions (4.51) automatically ensures com-
patibility of the optimal solution with requirements of the imposed constraints.
It also implies that the Lagrange function (4.49) equals the cost-function of
(4.48) at the optimal point.

Inequality-Constrained Problems

If the cost-function is only subjected to inequality constraints, the problem is
called an inequality-constrained optimisation problem. In the standard form,
the inequality-constrained optimisation problem is formulated as

minimise f0(x) {x} ∈ Rn

x

subject to fi(x) 6 0 i = 1, . . . , r
(4.52)

The optimality conditions can be found by reformulating the inequality-con-
strained optimisation problem as an unconstrained problem using a Lagrange
function [91].

L(x, λ) = f0(x) +
r∑

i=1

λifi(x) (4.53)

The summation term of the Lagrange function can be considered as a penalty
function. To ensure that a violation of the inequality constraints increases the
Lagrange function, the Lagrange multipliers must be non-negative.

λi > 0 (4.54)

The optimal solution results in a gradient of the Lagrange function that equals
zero, or

∂L
∂xj

=
∂f0(x)(x?)

∂xj
+

r∑
i=1

λ?
i

∂fi(x?)
∂xj

= 0 j = 1, . . . , n (4.55)

Equation (4.55) is not sufficient to provide the optimal solution, since it only
provides n equations while there are n + r unknown variables, i.e. the n com-
ponents of {x?} and the r components of {λ?}. The remaining r equations are
found by demanding that the Lagrange function equals the initial cost-function
at the optimal point, or

λ?
i fi(x?) = 0 i = 1, . . . , r (4.56)

The optimality conditions for an inequality-constrained optimisation problem
are commonly known as the Karush-Kuhn-Tucker (KKT) conditions and can
be summarised as

∂f0(x?)
∂xj

+
r∑

i=1

λ?
i

∂fi(x?)
∂xj

= 0 j = 1, . . . , n (4.57)

λ?
i fi(x?) = 0 i = 1, . . . , r (4.58)

λ?
i > 0 i = 1, . . . , r (4.59)

fi(x?) 6 0 i = 1, . . . , r (4.60)
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The first two equations provide the optimal solution. In case this set of equa-
tions provides more than one solution, the last two inequalities indicate the
feasible optimal solution.

Interpretation of the KKT Conditions

The interpretation of the KKT conditions (4.58) and (4.60) is evident and does
not require any additional explanation. Figure 4.19 provides a graphical in-
terpretation [68] of the other two KKT conditions. This plot presents three
different situations at three different points: (a) the negative cost-function
gradient at point 1 can be written as a linear combination of the constraint
gradients, i.e. KKT condition (4.57). However, one of the coefficients of the
linear combination is negative, which is a violation of KKT condition (4.59).
(b) It is impossible to express the negative gradient at point 2 as a linear com-
bination of the constraint gradients. (c) The negative cost-function gradient at
point 3 can be written as a linear combination of the constraint gradients, and
for this point, all the coefficients of the linear combination are positive. Since
point 3 also complies with KKT conditions (4.58) and (4.60), it has to be the
optimal point. Note that the contour lines of the cost-function confirm that
point 3 is indeed the optimal point.

Negative cost-function gradient
Constraint gradient

Feasible domain
Infeasible domain

Inequality constraints

?
3

2

1

Figure 4.19: Graphical interpretation of the KKT conditions.

4.5.2. Solving the Equality-Constrained Problem

To simplify the problem, consider an equality-constrained optimisation prob-
lem with linear constraints. In this case, the optimisation problem can be
formulated as
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minimise f0(x) {x} ∈ Rn

x

subject to
n∑

i=1

cji xi + dj = 0 j = 1, . . . , s
(4.61)

The constraint equations can be written in matrix form as [C]{x}+ {d} where
the matrix [C] ∈ Rs×n groups the coefficients and the vector {d} ∈ Rs the con-
stants of the equality constraints. This constrained optimisation problem can
be solved with Newton’s method as shown in [73]. The Newton search direc-
tion {vnt} is obtained from the second-order Taylor approximation of problem
(4.61) at working point {x}.

minimise f̂0(v) = f0(x) + {∇f0(x)}T{v}+ 1
2{v}

T
[
∇2f0(x)

]
{v}

v

subject to [C]({x}+ {v}) + {d} = {0}
(4.62)

As explained in section 4.4.3, the Newton search direction is the direction
that minimises this second-order approximation. According to the equality-
constrained optimality conditions (4.51), the minimiser {v?} = {vnt} of prob-
lem (4.62) is found from

{∇f0(x)}+
[
∇2f0(x)

]
{v?}+ [C]{η?}T = {0}

[C]({x}+ {v?}) + {d} = {0}
(4.63)

The current working point {x} is a feasible point, so [C]{x}+ {d} = {0}. The
second equation of (4.63) can thus be simplified to [C]{v?} = {0}, and the
constrained Newton search direction is found by solving[[

∇2f0(x)
]

[C]T

[C] [0]

] [
{vnt}
{η?}

]
=
[
−{∇f0(x)}

{0}

]
(4.64)

The second equation of (4.63) shows that the point obtained by taking the step
{vnt} automatically complies with the imposed constraints. Consequently, the
equality-constrained optimisation problem (4.61) can be solved as an uncon-
strained problem by using the Newton step provided by (4.64). Note that the
application of Newton’s method to solve an equality-constrained optimisation
problem requires a feasible starting point.

4.5.3. Solving the Inequality-Constrained Problem

The Penalty and Barrier Function Approach

Although a number of different approaches to handle inequality constraints
exist, all the available techniques are based on the transformation of the con-
strained problem into an unconstrained problem. The two most important
approaches are the penalty function [68] and barrier function [73] approach.
With the penalty function approach, an additional term is added to the cost-
function, and this for every imposed constraint. The penalty function approach
can be expressed as

F0(x) = f0(x) + γk

s∑
i=1

Fi

(
fi(x)

)
(4.65)
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where Fi is a function of the constraint fi(x) that results in a strictly positive
value, if x violates the considered constraint and zero otherwise. The penalty
factor γ is a positive weighting factor that determines the importance of the
penalty term with respect to the cost-function. The constrained minimum is
found by minimising the function F0(x) for a sequence of increasing penalty
factor values γk, in order to force the solution to converge to that of the initial
problem (4.52).
The barrier function approach is another technique that is commonly used
to reformulate an inequality-constrained problem into an unconstrained prob-
lem. This approach is similar to the penalty approach with the difference that
the penalty functions are now smooth within, and infinite outside the feasi-
ble domain. The most important class of barrier functions are the logarithmic
functions. The unconstrained cost-function of the logarithmic barrier approach
is given by

F0(x) = f0(x)− γk

s∑
i=1

ln
(
− fi(x)

)
(4.66)

where ln denotes the natural logarithm. The barrier parameter γk regulates the
importance of the barrier functions. The constrained minimum is obtained by
searching the minimum of F0 for a sequence of γk values that gradually decrease
to zero. A detailed discussion on the use of logarithmic barrier function can be
found in [73].
The penalty and barrier function approaches are very powerful methods that
can handle a wide variety of constraint functions. However, in case of lin-
ear constraint functions, both the penalty and barrier function approach are
computationally inefficient in comparison to the projection approach.

The Projection Approach

Projection methods [91] are limited to linearly constrained optimisation prob-
lems, but they can solve them in a computationally efficient way. Consider the
following reduced inequality-constrained optimisation problem

minimise f0(x) {x} ∈ Rn

x

subject to
n∑

i=1

cji xi + dj 6 0 j = 1, . . . , r
(4.67)

In matrix form, the constraints of (4.67) are expressed as [C]{x} + {d}6{0},
with [C] ∈ Rr×n and {d} ∈ Rr. Each inequality constraint divides the opti-
misation space into two domains: a feasible and an infeasible domain. Since
the constraints are linear, the boundary between the feasible and infeasible
domain of each constraint is a hyperplane. The gradient vector {Cj} of the
jth constraint is given by the transpose of the jth row of the constraint coeffi-
cient matrix [C]. These gradient vectors represent the direction perpendicular
to the hyperplane associated with the considered constraint.
Consider an optimisation procedure that has arrived at the kth iteration step.
Assume that, at this point, m linear constraints are active, the other (r −m)
constraints are inactive. Using the gradients of the active constraints, a matrix
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[Na] ∈ Rn×m can be constructed as

[Na] = [{C1} . . . {Cm}] (4.68)

To assure that the matrix [Na] is full rank, it is assumed that the number of
active constraints is smaller than the number of optimisation variables, or that
m < n. With descent algorithms, the cost-function is minimised in an iterative
way by taking a step t in a particular direction {vp}.

{x(k+1)} = {x(k)}+ t(k){v(k)
p } (4.69)

In order to reduce the cost-function, the direction indicated by {vp} must be
a descent direction. Assume that this vector lies at the intersection of all the
active constraint hyperplanes, or

[Na]T{vp} = {0} (4.70)

If expression (4.70) holds, the improved optimisation point {x(k+1)} will also
lie at the intersection of the active constraint hyperplanes, which means that
all the active constraints remain active and are respected. A suitable {vp}
vector can be obtained by projecting a general descent direction {v} onto the
constraint intersection

{vp} = [Pa]{v} (4.71)

where [Pa] is an orthogonal projection operator. An expression of the projection
operator [Pa] can be found as follows. The projected search direction is a
solution of the optimisation problem (4.72).

minimise {∇f0(x)}T{vp}
vp

subject to ‖{vp}‖N = 1
[Na]T{vp} = {0}

(4.72)

The minimisation of the product {∇f0(x)}T{vp} provides the optimal downhill
direction. The first constraint guarantees the boundedness of the solution,
while the second constraint ensures that the obtained search direction lies in
the subspace defined by the intersection of the active constraint hyperplanes.
Using the Lagrange formulation, the problem (4.72) can be written as

minimise {∇f0(x)}T{vp}+ µ
(
{vp}T[N ]{vp} − 1

)
+ {λ}[Na]T{vp}

vp (4.73)

in which µ ∈ R and {λ} ∈ Rm are the Lagrange multipliers. The gradient of
this Lagrangian equals zero for the directions {vp} that comply with

{vp} = − 1
2µ

[N ]−1
(
{∇f0(x)}+ [Na]{λ}

)
(4.74)

As explained in section 4.4.3, the value of the Lagrange multiplier µ is irrelevant
for the search direction. However, a value of 1

2 will result in a correct scaling of
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the Newton step, when the Hessian is being used as metric for the Euclidean
norm, so

{vp} = −[N ]−1
(
{∇f0(x)}+ [Na]{λ}

)
(4.75)

The unknown Lagrange multipliers {λ} can be found by inserting expression
(4.75) into the second constraint of (4.72).

[Na]T[N ]−1
(
{∇f0(x)}+ [Na]{λ}

)
= {0} (4.76)

Since [Na] is full rank, equation (4.76) can be solved for {λ}, which yields

λ = −
(
[Na]T[N ]−1[Na]

)−1
[Na]T[N ]−1{∇f0(x)} (4.77)

By inserting expression (4.77) into (4.75), the projected search direction can
be expressed as

{vp}=−
(
[I]− [N ]−1[Na]

(
[Na]T[N ]−1[Na]

)−1
[Na]T

)
[N ]−1{∇f0(x)} (4.78)

Since {v} = −[N ]−1{∇f0(x)} is the general search direction, expression (4.78)
has the same form as (4.71) and, therefore, the project operator [Pa] equals

[Pa] = [I]− [N ]−1[Na]
(
[Na]T[N ]−1[Na]

)−1
[Na]T (4.79)

The Set of Active Constraints

An essential part of any projection algorithm is the determination of the set of
active constraints. Since projection methods are iterative procedures, the set of
active constraints has to be updated before each iteration step. The updating
of the active set consists of two parts: (a) removing the constraints that have
become inactive, and (b) checking whether there are no new constraints that
should be added.
Adding a constraint — Initially, the optimisation algorithm computes the
step size t without considering any constraints. The projection of the search
direction assures that the constraints of the active set are respected. The other
constraints can be respected by limiting the step size. The working point of
the (k+1)th iteration is found by taking a step tk in the search direction

{x(k+1)} = {x(k)}+ tk{v(k)
p } (4.80)

Consider the ith constraint, the maximal allowable step results at working point
{x(k+1)} that lies on the constraint hyperplane; a larger step results in a viola-
tion of this constraint. If {x(k+1)} lies on the constraint hyperplane, then

{Ci}T{x(k+1)}+ {di} = {0} (4.81)

Inserting (4.80) into (4.81) provides

ti = −{Ci}T{x(k)}+ {di}
{Ci}T{v(k)

p }
(4.82)
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where ti is the upper limit of the step size, if only the ith constraint is taken
into account. To respect all the imposed constraints, the step size has to be
smaller than all the steps ti. The largest step that can be taken is thus given
by

t = min{ti|ti > 0} ∀i ∈ 1, . . . , r −m (4.83)

The negative ti values are ignored, because they relate to constraints that are
violated if a step is taken in the direction opposite to the search direction. The
step size t has to be compared with the unconstrained step size t. If t > t, the
step size has to be limited to t; moreover, the ith constraint, i.e. the constraint
for which ti = t, has to be added to the set of active constraints before a new
iteration is started. However, if t < t, the full search step can be taken without
violating any of the constraints. In this case, a new iteration can be started
with the same set of active constraints.

Removing a constraint — Determining whether a constraint remains active
or becomes inactive can be done by checking the sign of the Lagrange multi-
pliers λi. The optimal solution must comply with the KKT conditions (4.57–
4.60), which implies that all the Lagrange multipliers must be non-negative.
Constraints that are associated with negative Lagrange multipliers have to be
removed from the active set, since they would prevent the compliance with the
KKT conditions.
Alternatively, this requirement can be explained as follows. Inserting expres-
sion (4.46) into (4.75) provides {v} = {vp}− [N ]−1[Na]{λ}. The unconstrained
search direction vector can thus be decomposed into a component that lies on
the intersection of the active constraint hyperplanes, i.e. the projected search
direction vector {vp}, and a component that points away from this intersection,
i.e. −[N ]−1[Na]{λ}. The signs of the Lagrange multipliers λi thus determine
whether the unconstrained search direction points to the infeasible or feasi-
ble domain, i.e. whether the corresponding constraint has to remain active or
become inactive, respectively. Figure 4.20 provides an illustration.

−[N ]−1{∇f0(x)}

− [N ]−1[Na]{λ}{vp}

{x(k)}

{x(k+1)}

{Ci}

Figure 4.20: The relation between the general and the projected search di-
rection.
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Note that the solution provided by the projection algorithm also complies with
the other requirement of the KKT conditions. Equation (4.76) shows that

{∇f0(x)}+ [Na]{λ} = {0} (4.84)

Since [Na] comprises the constraint gradients, (4.84) implies that the first KKT
condition is met. For all the constraints of the active set fi(x) = 0, the second
KKT condition is thus also fulfilled. Since the projection approach prevents
the violation of any constraint, compliance with the fourth KKT condition is
automatically ensured, if the optimisation starts from a feasible point.

4.6. Solving the MNET Optimisation Problem

4.6.1. Introduction

Vibration-based identification techniques estimate elastic material properties
by minimising the sum of the squared differences between a set of experimen-
tally measured and numerically computed resonant frequencies. The choice
of the optimisation algorithm should be based on the particular properties of
this type of problem. The numerical resonant frequencies are calculated with
finite element models. This has two important consequences. First, solving an
FE-model is a computationally expensive step. Furthermore, chapter 3 showed
that, once the finite element model is solved, the response gradients can be
computed very efficiently. This implies that the preferred optimisation routine
should limit the number of direct cost-function evaluations by exploiting the
gradient information. In case of vibration-based material identification algo-
rithms, direct search methods like simplex methods, genetic algorithms and
neural networks are therefore inefficient in comparison to the derivative-based
approach. This section presents some practical considerations of how to apply
the techniques presented in the previous section in order to solve the MNET
optimisation problem.

4.6.2. Sequential Quadratic Optimisation

In case of FE-based MNET procedures, the optimisation can be carried out
in two different ways. The most obvious approach is illustrated by the left-
hand side plot of figure 4.21. For this approach, the minimisation routine uses
the following sequence of operations: solving the FE-model(s), performing a
sensitivity analysis, building a quadratic approximation of the cost-function
(4.85), computing the (projected) search direction, and taking a step in the
descent direction. This approach thus requires an evaluation of the FE-model(s)
for every step that is taken.(

[S]{x} − {∆f}
)T[W ]

(
[S]{x} − {∆f}

)
(4.85)

The alternative approach is based on a more efficient use of the quadratic
cost-function approximation. With the first approach, the cost-function ap-
proximation is only used to take a single step. However, this approximation is
a simple analytical expression. The evaluation of the cost-function approxima-
tion is thus inexpensive. Instead of just taking a single step, it is more efficient



88 4.6. SOLVING THE MNET OPTIMISATION PROBLEM

to minimise the approximation of the cost-function. This results in the process
that is displayed by the right-hand plot of figure 4.21. The optimisation process
is now split into two levels: main iterations and sub iterations. Although there
is no reduction in the number of iteration steps, since the majority of the expen-
sive main iterations has been replaced by cheap sub iterations, the alternative
approach is much faster than the initial approach. Note that the alternative
approach determines the minimum by minimising a sequence of quadratic cost-
function approximations; therefore, this approach is called sequential quadratic
optimisation9 [68].

Starting point Main iteration
Sub iteration

Main minimum
Sub minimum

Approximation f̂0Cost-function f0

Figure 4.21: The sequential quadratic optimisation approach.

4.6.3. The MNET Cost-Function

Convexity

The cost-function of a vibration-based MNET is not convex10. However, this
is not a such serious problem, since the MNET cost-function appears to be a
function without local minima. During all the calculations that were performed
in the framework of this thesis, not a single MNET cost-function with a local
minimum was encountered. Although it is impossible to prove, the following
theoretical reflection suggests that the MNET cost-function does not have any
local minima.
Consider an MNET problem with a single material parameter and two exper-
imental frequencies. Assume that the response surfaces are monotonic func-
tions of the material parameters, e.g. the fundamental flexural frequency of an
isotropic beam will always increase with an increase of the E-modulus, the fun-
damental torsional frequency will always decrease with an increase of Poisson’s
ratio. Under the assumption of monotonicity, the response curves have one of
the four forms shown on figure 4.22. By squaring the difference between the
response curve and the experimental response, one obtains the cost-functions
presented on the second row of 4.22. The four types of response functions
provide only two types of cost-functions. The cost-functions are clearly non-

9Note that sequential quadratic optimisation is not the same as sequential quadratic pro-
gramming (SQP). The sequential quadratic programming method is an optimisation method,
which focuses on the direct solution of the first-order optimality conditions and thus attempts
to compute explicitly the Lagrange multipliers [92].

10This will be shown further on in this section.
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Figure 4.22: The four types of response functions and the associated cost-
functions.

convex, however, they do not have any local minima. The total cost-function is
the sum of the cost-functions of the individual responses. Figure 4.23 presents
two different cases: the left-hand side plot presents the case with small resid-
uals, the right-hand side plot presents the case with large residuals. The plots
show that local minima appear only if the residuals are sufficiently large. The
same result can be found by using a different combination of cost-function
types, and by considering a higher number of parameters and responses.
To summarise, local minima only appear, if the residuals are large. This is not a
severe problem, since large residuals are unacceptable anyway. Large residuals
indicate that it is impossible to fit the experimental data with the considered
theoretical model. This implies that there is either something wrong with
the experimental data, or that the data is being fitted with a model that is
unable to describe the observed phenomenon. In both cases, the results of the
MNET cannot be trusted, irrespective of whether the cost-function has local
minima. Note that the cost-function, and thus the presence of local minima, is
independent of the starting values used to solve the identification problem.

pp

f0,r1

f0,r1

f0,r2

f0,r2

f0
f0

Small residuals Large residuals

Figure 4.23: The cost-function of the MNET’s optimisation problem.

Remember that this section does not provide a solid mathematical proof, it
just presents a theoretical reflection on the MNET cost-function.

Quadratic Approximation

The combination of a well designed MNET with carefully executed experiments
results in small residuals. In this situation, the cost-function does not have
any local minima, implying that the minimum can be found with a convex



90 4.6. SOLVING THE MNET OPTIMISATION PROBLEM

optimisation routine11 despite the fact that the cost-function is non-convex.
Newton’s method is the most appropriate optimisation algorithm to solve the
MNET’s optimisation problem. A second-order descent method finds the min-
imum of a quadratic cost-function in a single step. However, this is only valid
for non-constrained problems. Solving a constrained problem might require a
higher number of iteration steps. Consider the optimisation problem of figure
4.24.

Figure 4.24: An optimisation problem with a quadratic cost-function.

The working point of the optimisation procedure moves in the optimal descent
direction until it encounters one of the constraints. The search direction is
then projected onto the constraint, and a new step is taken. Due to the fact
that the step length is smaller than the distance to the nearest constraint and
because the cost-function is quadratic, the optimal point is found. Since the
cost-function is quadratic, the Newton direction is not an approximation of the
optimal search direction; it points towards the absolute minimum. As a result,
the working point always shifts towards the optimal point, and an active con-
straint can never become inactive. Therefore, the MNET optimisation routine
does not require an algorithm to remove a constraint from the active set of
constraints.

4.6.4. The Constraints

The MNET optimisation problem is a constrained optimisation problem. There
are four types of constraints that can be taken into account: bounds on the
material property corrections, bounds on the material properties, physical re-
strictions on the material properties, and relations between the material para-
meters.

Upper and Lower Bounds on the Material Property Corrections

With the MNET approach, the material properties are determined in an it-
erative way. The improved material parameters are based on a quadratic ap-

11This statement is valid because the MNET optimisation problem will not have any active
constraints at the optimal point, see section 4.6.4.
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proximation of the cost-function. Since this approximation is derived from the
response surface gradients, it is only valid in the vicinity of the current work-
ing point. Estimating the necessary parameter corrections based on unreliable
gradient information can result in a shift of the working point in the wrong
direction. To avoid unstable behaviour of the identification routine, the para-
meter changes should be limited to a region in which the gradient provides an
acceptable approximation of the cost-function, i.e. a trust region [93]. Since
the gradient information is recomputed during each iteration step, the trust
region moves together with the working point in the direction of the optimal
solution. Consequently, the trust region bounds affect only the way the mini-
mum is obtained, they do not affect the final solution. Figure 4.25 provides a
graphical representation of the trust region approach. The overlay plot shows
the trajectory of the working point from the initial parameter set to the optimal
point.

Trust region step

Newton step

Trust region

Second order approximation f̂0

Cost-function f0

Starting point Optimal point Optimal point approximation

Figure 4.25: Graphical representation of the trust region approach.

If the parameter changes are limited by an upper and lower bound on the
parameter changes, the trust region defines a hypercube in the parameter space.
In this case, the trust region bounds can easily be implemented by means of
the projection approach.

Upper and Lower Bounds on the Material Properties

Sometimes there is a priori information about the material parameters that
have to be identified. This a priori information can be incorporated into the
identification routine by using it to limit the extent of the search space. This
can be very useful in the situation where the values of a few material parameters
are approximately known. Take the example of a steel substrate covered with
a coating of which the elastic properties are completely unknown. Assume
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that the initial values of the coating properties are a severe overestimation of
the real properties. At first, the identification routine will reduce the stiffness
of both substrate and coating. Subsequently, the substrate properties will
approximately return to their initial level, while the coating properties will
further decrease to their correct physical values. During the first identification
phase, the properties of the substrate can be reduced to a level that is physically
impossible for steel. The number of necessary iteration steps can be reduced
by putting a limit on the absolute values of the substrate properties and thus
avoiding a severe undershoot during the initial phase of the identification. Since
the bounds are simple box constraints, they can easily be implemented with
the projection approach.
The bounds should be taken wide enough so that they are inactive at the
point defined by the optimal solution, otherwise they will cause a distortion
of the obtained results. Consequently, an optimal point with active bounds
provides invalid material parameters. In this situation, the active bounds have
to be widened and the MNET has to be solved again. Note that the material
parameters obtained with the initial bounds provide a good set of starting
values.

Ensuring the Physical Feasibility of the Material Properties

Chapter 2 introduced the physical limits elastic material parameters have to
comply with. It is required to incorporate these limits into the optimisation
routine, since a violation of these limits can result in a set of elastic parameters
that causes the finite element solver to crash. Table 4.3 gives an overview of the
physical limits of the parameters for both isotropic and orthotropic material
behaviour.

Table 4.3: The physical limits of the elastic material parameters.

Isotropic Orthotropic

E E > 0 (4.86) E1 > 0, E2 > 0 (4.88)

G — G12 > 0 (4.89)

ν − 1 < ν <
1
2

(4.87) |ν12| <
√
E1

E2
(4.90)

Limits (4.86–4.89) are linear constraints, and can easily be implemented with
the projection approach. The fifth limit, i.e. equation (4.90), is quite difficult
to handle, since it is both a non-linear and a non-convex constraint. The non-
linearity problem can be overcome by linearising the constraint around the
starting point {x0} = {0}. The McLauren series of this constraint provides

f̂ph(x) = −E1

(
1 + xE1

)
+ E2ν12

(
1 + xE2

+ 2xν12

)
(4.91)

where the x coefficients represent the parameter corrections during the con-
sidered iteration step. Note that by using the linearised constraint (4.91), the
actual constraint (4.90) can be violated. After every iteration step, the so-
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lution has be checked with respect to (4.90), and, if necessary, the working
point has to be shifted back to the feasible domain. Figure 4.26 provides a
one-dimensional illustration of this process.

Figure 4.26: Shifting the working point back to the feasible domain.

The non-convexity of the fifth constraint is not a problem. This constraint
represents a physical limit of the material properties, and should never be
active at the point defined by the final solution. Therefore, it is impossible
that the non-convexity distorts the results of the final solution.
Note that all the physical constraints have to be inactive at the point defined
by the final solution. If one of these constraints was active, the identified mate-
rial parameters would be thermodynamically infeasible in case the constraints
(4.86–4.90) had not been incorporated into the optimisation routine. So, if one
of these constraint was active at the final solution, then something went seri-
ously wrong either during the experimental or during the identification phase.

Relations Between the Material Parameters

In some cases, a number of relations between the different material parameters
may be taken into account. For example, consider a fibre-reinforced composite
with different fibre volume fractions in two separate layers. The elastic prop-
erties of these two layers are related with the fibre volume fraction. If the fibre
volume fractions of these two layers are known, the relation between them can
be taken into account during the identification.
If the considered relation is linear, it can be enforced with the equality con-
straint technique of section 4.5.2. If the considered relation is non-linear, it can
be linearised. Note that in case of linearised constraints, the working point has
to be shifted back onto the original constraint after every iteration step.

Pre-Processing the Constraints

In case of vibration-based material identification routines, a well-conditioned
sensitivity matrix can only be obtained by using relative normalised sensitivity
coefficients as given by (3.62). This implies that the optimisation problem has
to be solved in terms of relative parameters changes. Since the optimisation
problem is solved in terms of relative parameter changes, all the constraints
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have to be expressed in terms of relative parameter changes as well.
The optimisation parameters are related to the material parameters as

x =
∆p
p

or x(k) =
p(k+1) − p(k)

p(k)
(4.92)

in which k specifies the iteration step. The previous sections introduced three
sets of inequality constraints. The first set defines the maximum allowable
parameter corrections during one iteration step. These constraints can easily
be expressed in terms of parameter corrections as

x > xc and x 6 xc (4.93)

The second set, i.e. the bounds on the absolute parameter values, cannot be
handled as such by the optimisation routine; they first have to be converted
into bounds on the parameter corrections as

x > xa and x 6 xa (4.94)

In their initial form, these bounds are given by

p > p
a

and p 6 pa (4.95)

The current parameter values are related to the improved parameters values as

p(k+1) = p(k)(1 + x) (4.96)

By inserting (4.96) into (4.95), the latter can be rewritten as

x >
p

a

p(k)
− 1 and x 6

pa

p(k)
− 1 (4.97)

In a similar way, the box constraints defined by the physical restrictions on the
elastic material parameters can be expressed as

x 6 xph and x > xph (4.98)

where

xph =
p

ph

p(k)
− 1 and xph =

pph

p(k)
− 1 (4.99)

All these box constraints can be grouped into a single set of bounds

x 6 x and x > x (4.100)

where

x = min(xc, xa, xph) (4.101)

x = max(xc, xa, xph) (4.102)
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Figure 4.27: Detailed flowchart of the MNET’s optimisation routine.
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4.6.5. The MNET Optimisation Routine

The optimal approach to solve the MNET optimisation problem is a combi-
nation of the second-order projection method with the sequential quadratic
approximation scheme. Figure 4.27 presents a detailed flowchart of the opti-
misation routine integrated in the framework of the MNET.
A set of trial values of the elastic parameters is used to compute the resonant
frequencies of the test specimens. A cost-function approximation is build us-
ing the experimental frequencies and the frequency sensitivities with respect
to the material parameters. This cost-function approximation (4.85) is min-
imised with the second-order projection method. Note that the iterations in
the dashed box of figure 4.27 correspond with the sub iterations of figure 4.21.
The sub iterations provide the minimum of the cost-function approximation.
This minimum is used to compute a set of improved material parameters. The
improved material parameters are inserted in the FE-models and provide a new
cost-function approximation. The main iteration loop stops once the parameter
corrections are smaller than a pre-defined threshold.

4.7. Summary

This chapter provided the theoretical foundation of optimisation theory. It pre-
sented a short review of the most popular zero-order techniques, and explained
why these techniques are not optimal for the implementation of vibration-based
MNETs. It also provided a condensed overview of higher-order descent meth-
ods to solve unconstrained and constrained convex optimisation problems. In
the last section, these technique were used to develop a general framework to
solve the optimisation problem of a vibration-based MNET.



5
Vibratory Behaviour of
Layered Materials

Chapter five starts with the introduction of the classical lamination
theory. This theory describes the mechanical behaviour of layered
plates and can be used to study the fundamentals of the vibratory
behaviour of layered materials. The goal of this chapter is to pro-
vide a theoretical background on the possibilities of vibration-based
layered material identification, i.e. which material parameters can
be identified and what experimental data does this require.
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5.1. Classical Lamination Theory

5.1.1. Introduction

The classical lamination theory (CLT) or classical laminated plate theory is
an extension of the standard Kirchhoff thin plate theory towards layered ma-
terials. It originates from the domain of composite materials and is presented
in detail in [52, 53, 94]. The main goal of the classical lamination theory is to
predict the mechanical properties of a layered material from the properties of
its constituent layers, the stacking sequence and the layer orientation.
The classical lamination theory is based on a series of assumptions and hy-
potheses. First of all, it requires that the deformations are sufficiently small so
that linear elastic material behaviour can be assumed. It also presumes that
a line, originally straight and perpendicular to the middle surface of the plate,
remains straight and perpendicular to the middle surface when the plate is
stretched or bent. Requiring a normal to the middle surface to stay straight
and normal under deformation is equivalent to ignoring the shear strains in the
planes perpendicular to the middle surface. Using the notations of figure 5.1,
this means that γxz and γyz are assumed to be zero. In addition, the thickness
of the plate is also assumed to remain constant during loading, i.e. εz = 0.
Together, these hypotheses are called the Kirchhoff assumptions and can be
combined into the requirement that the plate is sufficiently thin.
Finally, the classical lamination theory presumes that the laminate consists of
perfectly bonded laminae with infinitesimally thin bonds that are not shear-
deformable. This means that none of the layers can slip relative to another
so that the through-thickness displacement field is continuous over the layer
interfaces.

X, u

Y, v

Z, w

middle surface

Figure 5.1: Definition of the conventional CLT axis system.

This section does not present a full overview of the classical lamination theory,
it only presents the part that is needed to understand the vibratory behaviour
of layered materials. The summary presented in this thesis is entirely based on
the text of [52].



5.1. CLASSICAL LAMINATION THEORY 99

5.1.2. The Strain Field under the Kirchhoff Assumptions

The implications of the Kirchhoff assumptions for the displacement components
u, v, and w, can be derived by considering the cross-section in the xz-plane
shown in figure 5.2. According to the Kirchhoff assumptions, the line ABD
must remain straight under deformation of the laminate. The displacement in
the x-direction of an arbitrary point C, situated on the same normal as B, can
thus be written as

uC = u0 + u′C (5.1)

where u0 and u′C are defined as indicated on figure 5.2. The assumption of
small deformations implies that

sinβ ≈ β ≈ tanβ =
∂w0

∂x
(5.2)

Since u′C , zC , and dx > 0 and dw0 < 0, one can state that

u′C = −∂w
0

∂x
zC (5.3)

The displacement in the x-direction of an arbitrary point of the plate can thus
be expressed as

u = u0 − ∂w0

∂x
z (5.4)

where u0 is the displacement in the x-direction of the middle surface at the
position of the considered point.

Z

D

D

C

C

B

B

A

A

zC

u′

C
︸︷︷︸

>0

= − zC
︸︷︷︸

>0

sin β
︸︷︷︸

<0

u0

X

u′

C

β

dx > 0

dw0 < 0

w0

Figure 5.2: Representation of the deformations in the xz-plane.

An expression for the displacement in the y-direction can be found in a similar
way.

v = v0 − ∂w0

∂y
z (5.5)

where v0 is the displacement in the y-direction of the middle surface at the
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position of the considered point.
By accepting the Kirchhoff assumptions, the following three strain components
are zero: γxz = γyz = εz = 0. Under the assumption of small deformations,
the remaining three strain components can be expressed in function of the
displacements as

εx =
∂u

∂x
, εy =

∂v

∂y
, γxy =

∂u

∂y
+
∂v

∂x
(5.6)

By substituting equations (5.4) and (5.5) into (5.6) the following expressions
for the strain components are obtained.

εx = ε0x + κ0
xz

εy = ε0y + κ0
yz (5.7)

γxy = γ0
xy + κ0

xyz

in which ε0x, ε0y and γ0
xy are the middle surface strains which are defined as

ε0x =
∂u0

∂x
, ε0y =

∂v0

∂y
, γ0

xy =
∂u0

∂y
+
∂v0

∂x
(5.8)

and κ0
x, κ0

y and κ0
xy are the middle surface curvatures which are defined as

κ0
x = −∂

2w0

∂x2
, κ0

y = −∂
2w0

∂y2
, κ0

xy = −2
∂2w0

∂x∂y
(5.9)

The three expressions of (5.7) can be contracted into a vector formulation as

{ε} =
{
ε0
}

+
{
κ0
}
z (5.10)

where {ε} is the strain vector on a particular z-level, {ε0} is the strain vector
at the middle surface and {κ0} is the curvature vector. The relation of (5.10)
expresses the deformation in an arbitrary plane parallel to the middle surface as
a function of the distance to the middle plane, the displacement of the middle
plane and the curvature at the location of the considered point. Note that the
assumptions of the classical lamination theory result in a continuous in-plane
displacement field that varies linearly through the thickness of the plate.

5.1.3. The Stress-strain Relation in a Layered Material

Consider a layered plate that consists of nl homogeneous and elastically or-
thotropic layers. If the Kirchhoff assumptions are respected, the stress-strain
relation in the kth layer of the considered plate is given by σx

σy

τxy


k

=

Q11Q12Q16

Q12Q22Q26

Q16Q26Q66


k

 εx

εy

γxy


k

(5.11)

in which the Qij coefficients are the reduced stiffnesses expressed in the local
axis system. Under the assumptions posed by the classical lamination theory,
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the strain field shows a linear variation in the through-thickness direction as
expressed by (5.10). The combination of (5.10) and (5.11) results in equation
(5.12), which relates the stress field in each layer to the deformation of the
central plane.

 σx

σy

τxy


k

=

Q11Q12Q16

Q12Q22Q26

Q16Q26Q66


k



ε0x
ε0y

γ0
xy

+


κ0

x

κ0
y

κ0
xy

 z

 (5.12)

Because two successive layers can have different elastic properties, equation
(5.12) implies that the linear strain field can be transformed into a discontin-
uous stress field, where the discontinuities are situated at the layer interfaces.
Since the individual layers are considered to be homogeneous, the stress field
in a single layer of the layered plate has to be continuous and linear.

5.1.4. Extensional, Coupling and Bending Stiffnesses

Consider a layered material with the structure of the plate of figure 5.3.

X , u

Y , v

Z, w

t

t

middle surface

middle surface

layer number

1

2

k

nl

z0

z1

z2

zk−1
zk

znl

t

2

Figure 5.3: The geometry of the considered layered material.
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The resultant forces and moments acting on a cross-section of this material are
obtained by integrating the stresses in each layer through the thickness of the
plate. Figure 5.4 presents this principle for the calculation of the normal force
Nx and the bending moment Mx.

t

2

−

t

2

dz

z
Y

X
1

σx

Figure 5.4: Determination of the resultant normal force Nx and the bending
moment Mx.

Eventually, the following section forces and moments are obtained.

Nx =
∫ t/2

−t/2

σx dz, Mx =
∫ t/2

−t/2

σxz dz (5.13)

Ny =
∫ t/2

−t/2

σy dz, My =
∫ t/2

−t/2

σyz dz (5.14)

Nxy =
∫ t/2

−t/2

τxy dz Mxy =
∫ t/2

−t/2

τxyz dz (5.15)

Nx and Ny are the in-plane normal forces, Mx and My are the bending mo-
ments, and Nxy and Mxy are the in-plane shear force and twisting moment,
respectively. Note that all the section forces and moments are expressed per
unit of length. By splitting the integrals over the total thickness into a sum of
integrals over the layer thicknesses, the resulting forces and moments can be
expressed as  Nx

Ny

Nxy

 =

t/2∫
−t/2

 σx

σy

τxy

dz =
nl∑

k=1

zk∫
zk−1

 σx

σy

τxy


k

dz (5.16)

 Mx

My

Mxy

 =

t/2∫
−t/2

 σx

σy

τxy

 z dz =
nl∑

k=1

zk∫
zk−1

 σx

σy

τxy


k

z dz (5.17)
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Inserting the stress-strain relations of (5.12) into the equations of (5.16) and
(5.17) provides

 Nx

Ny

Nxy

=
nl∑

k=1

Q11Q12Q16

Q12Q22Q26

Q16Q26Q66


k


zk∫

zk−1


ε0x
ε0y

γ0
xy

dz +

zk∫
zk−1


κ0

x

κ0
y

κ0
xy

 zdz

 (5.18)

 Mx

My

Mxy

=
nl∑

k=1

Q11Q12Q16

Q12Q22Q26

Q16Q26Q66


k


zk∫

zk−1


ε0x
ε0y

γ0
xy

zdz +

zk∫
zk−1


κ0

x

κ0
y

κ0
xy

 z2dz

 (5.19)

The middle plane strains and curvatures do not depend on z, and can, therefore,
be removed from under the summation signs. In this way, equations (5.18) and
(5.19) can be reformulated as

 Nx

Ny

Nxy

=

A11A12A16

A12A22A26

A16A26A66



ε0x
ε0y

γ0
xy

+

B11B12B16

B12B22B26

B16B26B66



κ0

x

κ0
y

κ0
xy

 (5.20)

 Mx

My

Mxy

=

B11B12B16

B12B22B26

B16B26B66



ε0x
ε0y

γ0
xy

+

D11D12D16

D12D22D26

D16D26D66



κ0

x

κ0
y

κ0
xy

 (5.21)

where

Aij =
nl∑

k=1

(
Qij

)
k
(zk − zk−1) (5.22)

Bij =
1
2

nl∑
k=1

(
Qij

)
k
(z2

k − z2
k−1) (5.23)

Dij =
1
3

nl∑
k=1

(
Qij

)
k
(z3

k − z3
k−1) (5.24)

(5.25)
The Aij , Bij and Dij coefficients are the integrated stiffness coefficients and
represent the stiffness of the layered material. The Aij coefficients, which are
called the extensional stiffnesses, relate the strain of the central plane to the
in-plane forces. The Dij coefficients relate the curvature of the central plane to
the resulting moments; these coefficients are called the bending stiffnesses. The
Bij coefficients describe a coupling between bending and extension of a layered
material; consequently, these coefficients are called the coupling stiffnesses. If
the layer structure of the material is not symmetrical, the coupling stiffnesses
will be non-zero. In this case, the extension of the central plane will result
in a bending and/or torsion moment, while its curving or twisting will induce
in-plane forces.
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5.2. Vibratory Behaviour of a Layered Material

5.2.1. Equations of Motion

Consider a differential rectangular element dxdy of a thin layered plate as
in figure 5.5. The equations of motion of a vibrating laminated plate can
be obtained from the translational and rotational equilibria of the forces and
moments acting on this differential element [94].

Mx +
∂Mx

∂x
dx

Nx +
∂Nx

∂x
dx

Mxy +
∂Mxy

∂x
dx

Nxy +
∂Nxy

∂x
dx

Qx +
∂Qx

∂x
dx

My +
∂My

∂y
dy

Ny +
∂Ny

∂y
dy

Mxy +
∂Mxy

∂y
dy

Nxy +
∂Nxy

∂y
dy

Qy +
∂Qy

∂y
dy

Mx

Nx

Mxy

Nxy

Qx

My

Ny

Mxy

Nxy

Qy Y

Z

X

Figure 5.5: The section forces and moments acting on a differential element.

In figure 5.5, Qx and Qy are the transverse shear forces. The translational
equilibrium in the x-direction yields

ρdxdy h
∂2u0

∂t2
=−Nxdy +

(
Nx +

∂Nx

∂x
dx
)

dy −Nxydx

+
(
Nxy +

∂Nxy

∂y
dy
)

dx
(5.26)

and can be simplified to

ρh
∂2u0

∂t2
=
∂Nx

∂x
+
∂Nxy

∂y
(5.27)

Note that in equations (5.26) and (5.27) the symbol t represents the time
variable. To avoid confusion, the plate thickness will temporarily be denoted
as h. The equilibrium equations in the y-direction (5.28) and z-direction (5.29)
can be obtained in a similar way.
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ρh
∂2v0
∂t2

=
∂Ny

∂y
+
∂Nxy

∂x
(5.28)

ρh
∂2w0

∂t2
=
∂Qx

∂x
+
∂Qy

∂y
(5.29)

The rotational equilibrium about the x- and y-axis provides two additional
equilibrium equations.

∂My

∂y
+
∂Mxy

∂x
−Qy = 0 (5.30)

∂Mx

∂x
+
∂Mxy

∂y
−Qx = 0 (5.31)

By inserting the rotational equilibrium equations into the translational equi-
librium equation in the z-direction, expressions (5.30), (5.31) and (5.29) can
be combined into (5.32).

ρh
∂2w0

∂t2
=
∂2Mx

∂x2
+ 2

∂2Mxy

∂x∂y
+
∂2My

∂y2
(5.32)

Inserting the relations of (5.20) and (5.21) into equations (5.28), (5.29) and
(5.32) yields a set of three partial differential equations (5.33–5.35) that de-
scribe the vibratory behaviour of a layered plate.

ρh
∂2u0

∂t2
=A11

∂2u0

∂x2
+ 2A16

∂2u0

∂x∂y
+A66

∂2u0

∂y2
+A26

∂2v0
∂y2

+(A12 +A66)
∂2v0
∂x∂y

−B11
∂3w0

∂x3
− 3B16

∂3w0

∂x2∂y
(5.33)

−(B12 + 2B66)
∂3w0

∂x∂y2
−B26

∂3w0

∂y3

ρh
∂2v0
∂t2

=A16
∂2u0

∂x2
+ (A12 +A66)

∂2u0

∂x∂y
+A26

∂2u0

∂y2
+A66

∂2v0
∂x2

+2A26
∂2v0
∂x∂y

+A22
∂2v0
∂y2

−B16
∂3w0

∂x3
(5.34)

−(B12 + 2B66)
∂3w0

∂x2∂y
− 3B26

∂3w0

∂x∂y2
−B22

∂3w0

∂y3

ρh
∂2w0

∂t2
=D11

∂4w0

∂x4
+ 4D16

∂4w0

∂x3∂y
+ 2(D12 + 2D66)

∂4w0

∂x2∂y2

+4D26
∂4w0

∂x∂y3
+D22

∂4w0

∂y4
−B11

∂3u0

∂x3
− 3B16

∂3u0

∂x2∂y

−(B12 + 2B66)
∂3u0

∂x∂y2
−B26

∂3u0

∂y3
−B16

∂3v0
∂x3

(5.35)

−(B12 + 2B66)
∂3v0
∂x2∂y

− 3B26
∂3v0
∂x∂y2

−B22
∂3v0
∂y3
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Note that the effects of rotatory inertia and material damping were ignored
during the derivation of the equations of motion.

5.2.2. Discussion

Solving the set of partial differential equations of (5.33–5.35) in combination
with the appropriate boundary condition equations, yields the resonant fre-
quencies and mode shapes of the considered layered plate. The boundary con-
dition equations are functions of Nx, Ny, Nxy, Mx, My and Mxy and can,
therefore, only depend on the plate’s material properties through the Aij , Bij

and Dij stiffness coefficients. This shows that the modal parameters of a lay-
ered plate are not a function of the material properties of the individual layers,
but that the dynamic behaviour is entirely controlled by the overall stiffnesses
defined by the Aij , Bij and Dij stiffness coefficients. Two plates with the same
dimensions and weight but with a completely different layer configuration, will
respond dynamically in an identical manner, if they have the same Aij , Bij

and Dij coefficients.
From an identification point of view, this observation implies that only the
values of the Aij , Bij and Dij coefficients can be obtained from the measured
vibration data of a layered plate. Since the [A], [B] and [D] matrices are sym-
metric, there are 18 identifiable coefficients. In case of elastically orthotropic
layers, the six reduced stiffness coefficients Qij depend on the values of the
principal stiffness parameters Q11, Q12, Q22 and Q66. This implies that only
four of the six Aij coefficients are independent. The same reasoning can be
made for the Bij and Dij coefficients. The modal data is thus entirely con-
trolled by 12 independent coefficients, therefore there are only 12 independent
equations linking the material properties of the layers to the (measured) modal
quantities. Because the layers of the plate are considered to have orthotropic
material properties, these 12 equations can only yield the material properties
of three layers.
However, this maximum of three layers is a theoretical limit. In the case of
real experiments, the number of identifiable layers will be lower, since normally
only resonant frequencies of transverse modes are measured. These transverse
modes are virtually insensitive to changes of the extensional stiffnesses Aij and
the coupling stiffness coefficients Bij . So, in most practical cases, only the
values of the bending stiffnesses Dij can be identified with sufficient accuracy,
reducing the number of identifiable parameters to 4. Apparently, the properties
of only a single orthotropic layer can be identified.

5.2.3. Numerical Example

The goal of this example is to illustrate the main conclusion of the CLT, i.e.
the insensitivity of the plate’s resonant frequencies to the elastic properties of
the individual layers.
Consider a coated steel plate, 150×150 mm, with the layer configuration of
figure 5.6. Table 5.1 presents the material properties of the three constituent
layers. According to the lamination theory, the frequencies should be entirely
controlled by the overall plate stiffness. This can be verified by randomly chang-
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Top coating

Bottom coating

Steel substrate

0.2 mm

0.2 mm

0.7 mm

Figure 5.6: The layer configuration of the coated steel plate.

Table 5.1: The material properties of the three layers.

E1 [GPa] E2 [GPa] G12 [GPa] ν12 [–] ρ [kg/m3]
Top coating 73.00 70.00 25.00 0.340 2700
Steel substrate 201.00 200.00 78.00 0.290 7900
Bottom coating 68.00 71.00 24.00 0.320 2700

ing the properties of the third layer while optimising the properties of the first
two layers in such a way that the overall plate stiffness remains constant. How-
ever, in this particular case, there are 12 equations, i.e. the 12 plate stiffnesses,
and only 8 unknowns, i.e. the elastic properties of the first two layers. There-
fore, it is not possible to find a new set of layer properties that result in exactly
the same plate stiffness. Since the transverse vibrations are mainly controlled
by the values of the bending stiffnesses, the optimisation focuses on matching
the Dij coefficients. The solution presented in table 5.2 is obtained by solving a
weighted least-squares problem, in which the residuals of the bending stiffness
coefficients Dij are weighted with a factor 1000 while the Aij and Bij stiffness
coefficients are weighted with a factor 1. Figure 5.7 presents the differences
between the elastic properties of the initial and the equivalent plate.

Table 5.2: The layer properties of the equivalent plate.

E1 [GPa] E2 [GPa] G12 [GPa] ν12 [–] Status
Top coating 85.04 58.93 33.00 0.320 Optimised
Steel substrate 166.55 227.70 54.96 0.310 Optimised
Bottom coating 80.00 60.00 32.00 0.300 Fixed

Table 5.3 compares the resonant frequencies of the first fifteen vibration modes
of the initial and equivalent plate. The observed frequency differences are
insignificant for identification problems, since they are smaller than the uncer-
tainty on the experimental frequencies. The observed differences are caused
by the influence of aspects that were ignored in the classical lamination the-
ory – the most important source – and by the residual differences between the
stiffness coefficients of the initial and equivalent plate, which are presented in
figure 5.8. Note that the good frequency match of table 5.3 was obtained with
substantial differences between the extensional stiffness coefficients, i.e. ± 15 %.



108 5.2. VIBRATORY BEHAVIOUR OF A LAYERED MATERIAL

Table 5.3: The frequencies of the initial (fin) and equivalent (feq) plate.

fin [Hz] feq [Hz] Diff. [%]
129.306 129.285 −0.02
191.908 191.902 0.00
239.766 239.753 −0.01
337.398 337.334 −0.02
337.549 337.485 −0.02
605.269 605.200 −0.01
605.975 605.897 −0.01
617.166 616.980 −0.03
677.494 677.345 −0.02
760.831 760.662 −0.02

1028.171 1027.770 −0.04
1028.500 1028.095 −0.04
1171.034 1170.832 −0.02
1228.201 1227.997 −0.02
1308.205 1307.907 −0.02
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Figure 5.7: The differences between the elastic properties of the initial and
equivalent plate.
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Figure 5.8: The differences between the stiffness coefficients of the initial and
equivalent plate.
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This confirms the assumption that the extensional stiffness coefficients do not
have a significant influence on the out-of-plane vibratory behaviour.
The influence of the through-thickness mass distribution is investigated by
comparing the frequencies of a plate with the mass densities of table 5.1 with
those of a plate with an homogeneous mass density distribution, i.e. all three
layers have the same average mass density of 6009.06 kg/m3. The frequency
differences of the first fifteen modes are about 0.007 %, which confirms that
the vibratory behaviour is controlled by the overall mass properties and not by
the mass densities of the individual layers. This is a quite convenient property
for the identification procedures, since it implies that the mass densities of the
layer materials do not have to be known; it suffices to know the overall mass
density of the layered material.
This numerical example confirms the conclusion of the classical lamination
theory that the vibratory behaviour of layered materials is not controlled by
the properties of the individual layers but by the overall properties of the
material. The example also shows that it is possible to find multiple sets
of layer properties resulting in the same resonant frequencies. This implies
that the inverse problem, i.e. estimating the layer properties from the resonant
frequencies, cannot have a unique solution. In fact, the identification problem
will have an infinite number of solutions, of which one represents the correct
layer properties.

5.3. Identifying the Layer Properties

The lack of sensitivity of the resonant frequencies with respect to the layer
properties does not mean that the layer properties cannot be identified. It
just implies that the layer properties cannot be identified from the resonant
frequencies of a single test specimen. A well-chosen set of test specimens can
provide enough information to identify the correct elastic properties of the
constituent layers.
The resonant frequencies of the out-of-plane vibration modes of a single test
specimen provide the necessary information for the identification of the bending
stiffness coefficients Dij . The key point is to find a way to decompose the
integrated stiffness coefficients into the layer properties. This can be done with
a number of different sets of stiffness coefficients, which all depend on the layer
properties in a different way, since in this situation there is only one set of layer
properties that can reproduce all the stiffness coefficients.
The bending stiffness coefficients depend on the layer properties through the
term

(
z3
k − z3

k−1

)
, as described in equation (5.24). The relation between the

stiffness coefficients and the layer properties can thus only be altered by chang-
ing the layer stacking sequence or by changing the thickness of one or more
layers. Changing the size or shape of the test specimen will not have any effect
on the bending stiffnesses, and will thus not solve the uniqueness problem. This
implies that layered material identification requires a number of purpose-built
samples with a different layer configuration.
The only question that remains is the number of sample configurations required
to guarantee the uniqueness of the obtained solution. Consider a layered plate
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with elastically orthotropic layers. In this case, the elastic behaviour of every
layer is characterised by four material parameters. The total number of para-
meters that must be identified equals 4×nm, considering the notations of table
5.4. The resonant frequencies of every sample configuration provide four plate
stiffness coefficients1. Consequently, the total number of equations thus equals
4×nc. A set of equations results in a unique solution if the number of equations
is greater than or equal to the number of unknowns. Consequently, a unique
solution is obtained, if nc > nm.
Despite the fact that isotropic material behaviour only requires two material
parameters, the number of necessary sample configurations does not change, if
the material has isotropic layers. In this case, the total number of unknown ma-
terial parameters equals 2×nm. For isotropic materials, the bending stiffness
coefficients Dij are determined only by two independent reduced stiffnesses,
i.e. Q11 and Q12. Consequently, the resonant frequencies of every sample con-
figuration provide only two independent bending stiffness coefficients, so that
the total number of equations equals 2×nc. This set of equations has a unique
solution, if nc > nm. This requirement is also valid for a material that has a
mix of orthotropic and isotropic layers. In comparison with a full orthotropic
laminate, every isotropic layer will reduce the number of unknowns by 2. The
number of independent stiffness coefficients, i.e. the number of equations, is
also reduced by 2. Once again, a unique solution requires nc > nm.

Table 5.4: Definitions.

nm the total number of different homogeneous materials constituting
the layers of a particular laminate

nc the number of sample configurations

5.4. Summary

This chapter used the classical lamination theory to show that the vibratory
behaviour of layered material samples is controlled by the overall stiffness of the
material and not by the stiffness of the individual material layers. As a result,
the vibratory behaviour of one test specimen does not provide enough infor-
mation to identify the layer properties. The elastic properties of the individual
layers can only be identified from a set of test samples which all have a different
layer configuration. It is shown that the minimum number of layer configura-
tions that is required to identify the layer properties equals the number of layer
materials that have to be characterised.

1In case only out-of-plane vibration modes are taken into account.



6
Identification Routines

In this chapter, all the methods and techniques that have been
discussed in the previous chapters are combined into a number of
identification routines for elastic material properties. The presented
identification routines use two different types of test specimens:
beam-shaped and plate-shaped. This chapter starts with a detailed
discussion about the possibilities of beam- or plate-shaped speci-
mens. Next, the identification routines are first introduced for non-
layered materials. Finally, these routines are extended to layered
materials.
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6.1. The Specimen Shape

Finding samples that have one or more resonant frequencies sensitive to changes
of the identification parameters is an important issue in vibration-based ma-
terial identification. In this section, the influence of the sample shape and
orientation on the sensitivity of the resonant frequencies with respect to the
elastic material properties is investigated numerically. Two types of samples
are being considered: beam-shaped and plate-shaped. The sensitivity analysis
is performed with a number of finite element models which represent homoge-
neous brass or carbon-epoxy samples. Table 6.1 provides the properties of the
considered materials. The evaluation is restricted to the lower order vibration
modes, since they can be measured and modelled more accurately than the
higher order ones.

Table 6.1: The properties of the considered materials.

Carbon-Epoxy
Brass

UD1 BD2 Units

E1 105 100 100 [GPa]
E2 100 10 50 [GPa]
G12 38 8 15 [GPa]
ν12 0.36 0.25 0.20 [–]
ρ 8200 1400 1400 [kg/m3]
1 Uni-directionally reinforced
2 Bi-directionally reinforced

6.1.1. Beam-Shaped Specimens

For beam-shaped specimens, the sensitivity analysis is performed using a finite
element model of a brass beam. This beam has a length of 100mm, a width of
20 mm and a thickness of 2 mm. The long-axis of the sample makes an angle of
55◦ with the principal material direction, i.e. the rolling direction of the brass.
The global axis system, i.e. the material orientation, and the local axis system,
i.e. the sample orientation, are defined as indicated in figure 6.1.

1

2

x

y

Rolling direction
55◦

Figure 6.1: The global and local axis system for the brass specimen.
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The first five vibration modes of the considered sample are all out-of-plane
modes. Table 6.2 presents the mode shapes and resonant frequencies. The
out-of-plane vibration modes of a beam-shaped sample can be divided into two
classes, i.e. flexural modes and torsional modes.

Table 6.2: The first five vibration modes of the brass beam.

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

725.9Hz 2014.2Hz 2108.6 Hz 3978.5 Hz 4327.5 Hz
OOP-1 OOP-2 Tors-1 OOP-3 Tors-2

The sensitivity analysis is performed in two coordinate systems. First it is
performed using the local axis system, the second time using the global axis
system. Each time, the sensitivity coefficients are calculated for the first five
vibration modes.
Using the local axis system, the frequency sensitivities are calculated with re-
spect to the material parameters Ex, Ey, Gxy, and νxy. The obtained frequency
sensitivities are graphically presented in figure 6.2. The sensitivity analysis
shows that the flexural modes are only sensitive to changes of the Ex modulus,
i.e. the elastic modulus in the direction of the beam’s long-axis. Moreover, the
torsional modes are only influenced by a variation of the apparent shear mod-
ulus Gxy. Both flexural and torsional modes are insensitive to changes of the
Ey modulus and Poisson’s ratio. This implies that only information about the
elastic modulus Ex and the shear modulus Gxy can be extracted from the reso-
nant frequencies of the out-of-plane vibration modes of a beam-shaped sample
of an orthotropic material.
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Figure 6.2: The sensitivity coefficients of the first five modes of a beam-
shaped specimen, using the local axis system.
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The sensitivity coefficients are also computed using the global axis system.
With this coordinate system, the frequency sensitivity coefficients are calcu-
lated with respect to the principal material parameters E1, E2, G12, and ν12.
Figure 6.3 presents the results of this sensitivity analysis. Now, there is a
good sensitivity with respect to all material parameters. This means that the
resonant frequencies of this beam provide information about the four mate-
rial parameters. However, this does not imply that all four parameters can
be simultaneously identified from these five frequencies. Figure 6.3 indicates
that the three flexural modes, i.e. modes one, two and four, contain almost
identical information about the elastic properties. The same can be said about
the torsional modes, i.e. modes three and five. This implies that there are
only two independent information sets and that only two material parameters
can be identified, which corresponds with the results of the sensitivity analy-
sis performed in the local axis system. Note that the sensitivity coefficients
change, when the orientation of the beam with respect to the rolling direction
changes. For example, if the long-axis of the beam is parallel with the rolling
direction, a sensitivity pattern like that presented in figure 6.2 is obtained. A
beam with a different orientation consequently provides additional information
on the elastic properties.
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Figure 6.3: The sensitivity coefficients of the first five modes of a beam-
shaped sample, using the global axis system.

6.1.2. Plate-Shaped Specimens

The evaluation of the frequency contents of a plate-shaped specimen presented
in this section is an alternative interpretation of the work of [5,19]. Consider a
square bi-directionally reinforced carbon-epoxy plate with a thickness of 2 mm
and sides with a length of 300mm. The sensitivity coefficients with respect to
the four orthotropic material parameters E1, E1, G12, and ν12 are evaluated
for the resonant frequencies of the first ten vibration modes. Table 6.3 presents
the mode shapes and the associated resonant frequencies; figure 6.4 is a plot of
the sensitivity coefficients.
The results show that there is a good sensitivity with respect to the elastic
moduli E1 and E2 and the shear modulus G12; however the Poisson’s ratio
sensitivities are very low. The third mode has the highest ν12-sensitivity, but
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Table 6.3: The first ten vibration modes of the square carbon-epoxy plate.

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

77.1Hz 136.8Hz 196.2 Hz 208.3 Hz 248.7 Hz
Torsional Flex-1-Y Flex-1-X TorFlex-Y TorFlex-X

Mode 6 Mode 7 Mode 8 Mode 9 Mode 10

387.0Hz 389.3Hz 449.2 Hz 545.3 Hz 594.1 Hz
Flex-2-Y — — Flex-2-X —
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Figure 6.4: The sensitivity coefficients of the first ten modes of a plate-shaped
specimen.
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the sensitivity is about twenty times smaller than the sensitivity of the most
sensitive parameter of this mode, i.e. E1. The same sensitivity coefficients are
also calculated for a 300×280 mm carbon-epoxy plate. Figure 6.5 compares
the new Poisson’s ratio sensitivity coefficients with the previous ones. The
third mode remains the most sensitive mode, and its ν12-sensitivity increased
by about 30%. The sensitivity of the second mode has benefited the most
from the dimensional change of the plate, since the ν12-sensitivity has tripled
for this mode. Apparently, the aspect ratio3 of a plate has a considerable
influence on the Poisson’s ratio sensitivities. To examine the influence of the
aspect ratio in detail, the ν12-sensitivities are calculated for a set of plates with
aspect ratios varying between 0.6 and 2.4. The results, which are plotted in
figure 6.6, confirm the strong influence of the aspect ratio on the Poisson’s
ratio sensitivities. They also reveal the presence of a number of optimal aspect
ratios. The highest Poisson’s ratio sensitivities are obtained for the plate with
a aspect ratio of 1.19, but the plates with a aspect ratio of 0.76 and 1.86 also
show an increased ν12-sensitivity.
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Figure 6.6: The Poisson’s ratio sensitivity in function of the aspect ratio of
the plate.

The presence of the peaks in the Poisson’s ratio sensitivity curves can be ex-
plained by analysing the mode shape plots. Table 6.3 shows that a plate-shaped
specimen has two first-order flexural modes, one in the x-direction (Flex-1-X)
and one in the y-direction (Flex-1-Y). For the square carbon-epoxy plate, these
two flexural modes are uncoupled; this means that the flexural mode in the x-
direction has almost no deformation component in the y-direction, and vice
versa. Since the Poisson’s ratio describes the link between the deformation
in two mutually orthogonal directions, a good Poisson’s ratio sensitivity can
only be obtained with a mode that has a deformation component in both the
x- and y-direction. Such a deformation pattern should be obtained when the
first-order flexural modes are coupled. This is exactly what happens with the
two first-order flexural modes of the plate with the aspect ratio of 1.19. The
second mode of this plate, the anti-clastic mode, is the combination of Flex-1-X
and Flex-1-Y mode with a phase difference of 180◦. The third mode, which

3This is the ratio of the length over the width.
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is called the sin-clastic mode, is the in-phase combination of the Flex-1-X and
Flex-1-Y mode. Table 6.4 presents the mode shapes of these two modes. Be-
cause of their physical appearance, the anti-clastic and sin-clastic modes are
usually referred to as the saddle and the breathing mode, respectively.

Table 6.4: The mode shapes of the two most sensitive modes for ν12.

anti-clastic

sin-clastic

The other peaks in the sensitivity curves of figure 6.6 are also the result of a
coupling between a flexural mode in the x-direction and one in the y-direction.
For the plate with a aspect ratio of 0.76, the Flex-1-X and the TorFlex-Y
modes are coupled. For the plate with the aspect ratio of 1.86 a coupling
between the Flex-1-Y and the TorFlex-X modes can be observed. Table 6.5
presents the modes shapes of these coupled modes. In fact, every aspect ratio
that results in a coupling between a mode with a flexural deformation in the
x-direction and a mode with a flexural deformation in the y-direction results
in an increased ν12-sensitivity. However, the highest sensitivities are obtained
for the coupling between the two first-order flexural modes. Subsequently, a
plate with a aspect ratio that results in two coupled first-order flexural modes
is called a Poisson-plate [19].

Table 6.5: The higher order sin-clasic and anti-clastic modes.

aspect ratio = 0.76 aspect ratio = 1.86

anti-clastic

sin-clastic

To exploit the advantages of the Poisson-plate, there has to be a simple tool
to predict the optimal aspect ratio. As shown in [5], such a tool can be de-
rived from the fact that a Poisson-plate requires two coupled first-order flexural
modes. Two modes can be coupled by making their resonant frequencies to co-
incide. The frequency of the fundamental flexural mode in the length direction
of a plate can be approximated [95] by

f =
ς

2πl2

√
E1t2

12ρ (1− ν2
12)

(6.1)
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The resonant frequency of the first flexural mode in the y-direction can be
estimated in the same way.

f =
ς

2πw2

√
E2t2

12ρ (1− ν2
21)

(6.2)

In expressions (6.1) and (6.2), l represents the plate length, w denotes the plate
width and ς is a coefficient that depends only on the considered vibration mode.
By demanding that the two first-order flexural modes have the same resonant
frequencies, (6.1) and (6.2) can be combined into

l2

w2
=

√
E1

E2

(1− ν2
21)

(1− ν2
12)

(6.3)

Since, for most materials √
(1− ν2

21)
(1− ν2

12)
≈ 1 (6.4)

equation (6.3) can be simplified to

l

w
= 4

√
E1

E2
(6.5)

Expression (6.5) provides an efficient tool to calculate the optimal aspect ratio
of a test plate. A plate with this aspect ratio has two coupled first-order flexural
modes, and, consequently, a maximal Poisson’s ratio sensitivity. Applying
formula (6.5) to the considered carbon-epoxy plate results in an optimal aspect
ratio of 1.19, which is exactly the position of the highest peak of the Poisson’s
ratio sensitivities of figure 6.6. Figure 6.7 presents the sensitivity coefficients
of the resonant frequencies of the first ten vibration modes of the optimised
test plate. The third mode remains the most sensitive mode for ν12. For this
mode, the Poisson’s ratio sensitivity has increased to one sixth of the value of
the maximal sensitivity coefficient of this mode.
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Figure 6.7: The sensitivity coefficients of the first ten vibration modes of the
optimal test plate.
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6.2. Identification Routines for Non-Layered Materials

This section introduces the MNET-based identification routines for the char-
acterisation of non-layered materials. The non-layered material routines form
the foundation for the development of the layered material routines. In this
section, all the materials are considered to be uniform, homogeneous and elas-
tically orthotropic.

6.2.1. Using Beam-Shaped Specimens

The Single-Orientation Routine

The sensitivity analysis of section 6.1.1 revealed that the resonant frequencies
of the out-of-plane vibration modes of beam-shaped specimens provide only
two independent information sets. Orthotropic material behaviour requires a
material model with four independent parameters, therefore it is impossible
to characterise orthotropic materials with the resonant frequencies of a single
beam. However, isotropic material behaviour requires only two independent
parameters, and can thus be fully characterised using the resonant frequencies
of a single beam-shaped specimen. Of the two information sets provided by
the resonant frequencies of a beam, one set is provided by the flexural fre-
quencies, the other one by the torsional frequencies. Measuring more than

Y
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Experiment FE-model

Comparison & Optimisation

Convergence ?

Input data

Geometry, mass
Trial parameters: E, ν

Resonant frequencies
- First flexural mode
- First torsional mode

Resonant frequencies
Frequency sensitivities

Improved material parameters

NoYes

Identified parameters: E, ν

G =
E

2 (ν + 1)

Parameter corrections

Figure 6.8: The flowchart of the single-orientation MNET procedure.
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one flexural/torsional frequency is not useful, because all the flexural/torsional
frequencies provide the same information. Furthermore, finite element models
converge faster for lower order vibration modes, therefore it is advisable to use
only the resonant frequencies of the fundamental vibration modes as input data
for the identification routine.
Figure 6.8 presents the flowchart of the single-orientation MNET routine. The
FE-model of the test sample uses an isotropic material model. The two elastic
parameters, E and ν, are fine-tuned in order to match the experimental and
numerical resonant frequencies of the fundamental flexural and torsional vibra-
tion mode. From a physical point of view, it would make more sense to use
the elastic and shear modulus as optimisation parameters, but in finite element
modelling isotropic material behaviour is often described with E and ν.
The single-orientation routine starts by calculating the resonant frequencies of
the test specimen using a set of trial values for E and ν. The numerical fre-
quencies are compared with the experimentally measured resonant frequencies
and a set of parameter corrections is estimated in order to reduce the observed
frequency differences. The material parameters are corrected and a new iter-
ation step is performed. Once the material parameter corrections are lower
than a pre-defined threshold, the iteration cycle is aborted and the values of E
and ν are retrieved from the database of the FE-model. In a post-processing
step, the material’s shear modulus is derived from the values of E and ν using
equation (2.31).
Although the single-orientation routine assumes isotropic material behaviour,
it can be used for the characterisation of orthotropic materials. Consider the
sensitivity analysis performed on the brass beams in section 6.1.1. Figure
6.2 presents the results of the sensitivity analysis performed in the local axis
system. These results reveal that the fundamental flexural and torsional fre-
quencies are virtually insensitive to a change of Ey and νxy. While being or-
thotropic, for these two vibration modes, the material behaves like an isotropic
material, i.e. it is controlled by only two material parameters. So, by applying
the single-orientation routine on an orthotropic material, the apparent E- and
G-modulus in the direction parallel to the beam’s long-axis, can be identified.
The identification test was simulated to assess the error made by applying a
method that assumes isotropic behaviour on orthotropic materials. Consider a
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22.5◦
45.0◦

67.5◦ 90.0◦

Rolling direction

Figure 6.9: A set of five beams with a different material orientation.
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set of beams, 100×15×2 mm, that are cut out of a brass plate. The sample set
comprises five beams which make an angle of 0◦, 22.5◦, 45◦, 67.5◦, and 90◦ with
the rolling direction. Figure 6.9 presents the considered sample set.
These five beams are modelled using the orthotropic brass properties of table
6.1. The FE-models provide the fundamental flexural and torsional frequency
of the test beams. For each beam, these two resonant frequencies are entered
into the identification routine of figure 6.8 and the elastic properties are esti-
mated. The obtained results are presented in the plots of figure 6.10. In these
graphs, the dashed lines represent the correct orthotropic brass properties,
while the diamonds represent the results of the single-orientation identification
routine. It can be seen that values of the elastic and shear modulus are cor-
rectly identified. The single-orientation routine even allows the identification
of the variation of these two elastic parameters in function of the material ori-
entation. However, as illustrated by the considered example, the correctness
of the identified Poisson’s ratios cannot be guaranteed. For this example, the
trend of the variation in function of the orientation does even not correspond
with the correct trend. Table 6.6 gives an overview of the error between the
identified and correct values.

Table 6.6: Accuracy of the single-orientation identification routine.

Orientation Error Ex Error Gxy Error νxy

0.0◦ −0.08 −0.01 19.41
22.5◦ −0.05 −0.03 4.84
45.0◦ 0.07 −0.11 −11.14
67.5◦ 0.03 −0.06 −4.53
90.0◦ −0.03 0.00 5.31

[%] [%] [%]

At first sight, it might seem quite suspicious that the shear moduli, which are
derived from incorrect Poisson’s ratio values, are correct. There is, however, a
logical explanation. In the single-orientation routine, the E-modulus is mainly
controlled by the value of the flexural frequency while Poisson’s ratio is pri-
marily determined by the torsional frequency of the beam. Since torsion is a
physical phenomenon that results in a shearing deformation, the value of Pois-
son’s ratio is optimised for shearing and thus results in a correct value of the
shear modulus. If the Poisson’s ratio would have been derived from a physical
phenomenon that was controlled by the coupling of two orthogonal strain com-
ponents, the value of ν would be correct and the post-processing step would
result in an incorrect value of the shear modulus.
In case of mildly orthotropic materials like sheet metals, the single-orientation
routine identifies the correct values of the apparent elastic and shear modu-
lus. However, the correctness of Ex and Gxy cannot be guaranteed for gen-
uinely orthotropic materials, such as fibre reinforced plastics. Consider the
uni-directionally reinforced carbon-epoxy material of table 6.1. Figure 6.11
presents the differences between the correct properties and the values iden-
tified with the single-orientation routine, using 100×20×2 mm beam-shaped
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Figure 6.12: Mode shape of the fundamental flexural frequency of the carbon-
epoxy beam.
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Figure 6.13: Mode shape of the fundamental torsional frequency of the
carbon-epoxy beam.
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samples. The huge discrepancies between the correct and identified properties
are caused by two different mechanisms: an overestimated transverse shear
stiffness, and incorrect modal displacement fields. As already explained, the
single-orientation routine derives the value of Poisson’s ratio from the torsional
frequency. If the material is not isotropic, this results in an error in Poisson’s
ratio, which is proportional to the degree of anisotropy. With an isotropic ma-
terial model, an overestimation of the Poisson’s ratio results in an increased
transverse shear stiffness of the beam. This implies that the measured resonant
frequency of the flexural mode can be reproduced with a lower flexural stiffness,
since the underestimation of the flexural stiffness is compensated by the trans-
verse shear stiffness. In case of the uni-directionally reinforced carbon-epoxy
material, the single-orientation routine results in an unrealistic Poisson’s ratio
of 4.1 for the 0◦ direction. The Poisson’s ratio gradually decreases in function
of the orientation and reaches an acceptable level, according to (2.61), at ±33◦.
The identification should thus result in an underestimation of the E-modulus,
which is most pronounced in the range between 0◦ and 33◦. This is exactly
what is observed in figure 6.11.

The increased transverse shear stiffness can, however, not explain the over-
estimation of the shear modulus. Figures 6.12 and 6.13 present the modal
displacement fields of the actual test specimen at a 40◦ orientation. The dis-
placement fields of the actual test specimen are not aligned with the specimen’s
long-axis. The displacement field is rotated or twisted around the z-axis due
to the presence of the reinforcing fibres. The identification routine uses a fi-
nite element model with isotropic material behaviour. Such a model has the
same properties in every direction, so the modal displacement fields have to be
aligned with the sample edges, as shown in figures 6.12 and 6.13. Unlike the real
test specimens, the identification model is not stiffened by an additional twist-
ing deformation being, therefore, too flexible. Identifying material parameters
with a model that is too flexible, results in an overestimation of the material
properties. Note that the displacement fields of samples oriented along the
principal material directions are not affected. Figure 6.11 presents a behaviour
that qualitatively corresponds with the effects of this twisting phenomenon.

To conclude, it should be mentioned that the single-orientation routine is the
MNET equivalent of the resonant beam techniques presented in the ASTM
standard [4]. All the considerations and remarks about the single-orientation
routine are, therefore, also applicable for the ASTM test procedures.

The Multi-Orientation Routine

Section 6.1.1 showed that the resonant frequencies of a single beam-shaped
specimen do not provide enough information to fully characterise the constitu-
tive behaviour of orthotropic materials. The amount of useful information can
be increased by using a number of beams with a different material orientation.
Figure 6.14 shows the sensitivity coefficients of the fundamental flexural and
torsional frequency of the five test beams of figure 6.9. The results indicate that
each beam provides a different set of information about the four orthotropic
material parameters.
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Figure 6.14: The sensitivity coefficients of the set of brass beams of figure 6.9
for the first flexural and torsional resonant frequency.

The multi-orientation routine extracts the elastic material parameters from
the frequencies of a set of test samples, each of which representing a different
material orientation. Figure 6.15 gives the flowchart of the multi-orientation
routine. The routine requires an FE-model of each sample of the test sample set
and one orthotropic material model. All these FE-models share this material
model.
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Figure 6.15: The flowchart of the multi-orientation MNET procedure.
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The routine starts with the calculation of the resonant frequencies of all the test
specimens using a set of trial values for E1, E2, G12, and ν12. The numerical
frequencies of the considered test samples are compared with the experimentally
measured resonant frequencies, and a set of parameter corrections is estimated
in order to reduce the observed frequency differences. The parameters of the
material model are corrected and inserted into all the FE-models so that a
new iteration step can be performed. Once the material parameter corrections
are lower than a predefined threshold, the iteration cycle is aborted and the
material parameters are retrieved from the database of the material model.
Figure 6.14 presents the sensitivity coefficients of the fundamental flexural and
torsional frequency of the five test beams. At first sight, the sensitivity coef-
ficients look linearly independent but they are not. The condition number4 of
the global sensitivity matrix that groups the sensitivity coefficients of these ten
frequencies equals 5.4, which confirms that this data set provides enough in-
formation to identify the unknown orthotropic material parameters. Grouping
only the sensitivity coefficients of the flexural frequencies results in a sensi-
tivity matrix with a condition number of 3·105. The sensitivity matrix that
just contains the torsional frequency sensitivities is also ill-conditioned; it has
a condition number of 3·104. A full orthotropic identification thus requires a
mix of both flexural and torsional frequencies.
A full orthotropic identification does not require the frequencies of five different
beams. Two well-chosen beams can provide the necessary information. The
flexural and torsional frequencies of the 0◦ and 45◦ beams provide enough
information, since they result in a sensitivity matrix with a condition number
of 5.0. The combination of the flexural and torsional frequencies of the 0◦

and 90◦ beams results in a sensitivity matrix condition number of 5·104, which
implies that the identification requires at least one beam in an off-axis direction.
The opposite is not true: the beams in the on-axis directions are not strictly
necessary, however it is advisable to use them5.
In some situations, it might even be desirable to use only one frequency per
sample. For example, suppose the elastic properties have to be measured in a
particular temperature range. For such a test, the resonant frequencies have to
be measured, while the sample is being heated in a furnace. Because a flexural
and torsional frequency demand a different set-up, it is difficult to measure
both frequencies at the same time. This implies that the frequencies have to
be measured in two different runs. Unfortunately, the first temperature cycle
may alter the properties of the sample, as every heat treatment. To avoid
such problems, the properties have to be identified with only one frequency
per sample. For the considered set of brass beams, all test configurations that
use a single frequency per beam were investigated and compared. The optimal
configuration is the combination of the flexural frequencies of the 0◦, 45◦, and
90◦ beams with the torsional frequencies of the 22.5◦ and 67.5◦ beams. This

4The condition number of a matrix is the ratio of the largest singular value over the
smallest singular value, and varies between 1 and ∞. According to [96], updating problems
with condition numbers larger than 103 are ill-conditioned, and problems with conditions
numbers larger than 107 are singular.

5The influence of the sample set on the quality of the obtained results is discussed in
detail in chapter 7.
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test configuration has a sensitivity matrix condition number of 5.3, which shows
that using only one frequency per sample is possible, even without a reduction
of the amount of provided information.

6.2.2. Using Plate-Shaped Specimens

The routine presented is this section is a modified version of the routine intro-
duced in [5]. This routine identifies the material parameter from the resonant
frequencies of the first three vibration modes of a plate-shaped specimen and
the fundamental flexural frequencies of two beam-shaped specimens oriented
in the two principal material directions. It is, however, possible to identify
the material properties from the resonant frequencies of only the plate-shaped
specimen. The sensitivity analysis of section 6.1.2 showed that the resonant
frequencies of a plate-shaped specimen provide information about all four elas-
tic material parameters, if the geometry of the plate complies with (6.5). This
particular geometry is needed to ensure the sensitivity with respect to the Pois-
son’s ratio. However, this geometry has another advantage. The order of the
first three vibration modes of a Poisson-plate is fixed [5]. The first mode is the
torsional mode, the second mode is the saddle mode, and the third mode is al-
ways the breathing mode. The fourth and fifth mode are the torsional-flexural
modes in the x- and y-direction. The relative order of these last two modes
is not fixed and varies from plate to plate. Note that the first five modes of a
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Figure 6.16: Flowchart of the MNET procedure for plate-shaped specimens.
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Poisson-plate provide enough information to fully identify an orthotropic ma-
terial; to be precise, the sensitivity matrix grouping the sensitivity coefficients
of the first five modes of figure 6.7 has a condition number of 9.4.
Figure 6.16 shows the flowchart of a routine that extracts the elastic parame-
ters from the first five resonant frequencies of a plate-shaped specimen. This
identification routine requires a finite element model of the test plate with an
orthotropic material behaviour. A set of trial values of the elastic parameters
E1, E2, G12, and ν12 is used to compute the first five resonant frequencies of the
test plate. The resulting numerical frequencies are compared with the resonant
frequencies of the equivalent experimental modes. The observed frequency dis-
crepancies are minimised by optimising the material parameters of the finite
element model. Once the solution has converged, the iterative procedure is
aborted and the elastic properties are retrieved from the material database of
the finite element model.
Let us conclude with the following experimental consideration. Theoretically,
a Poisson-plate results in a fourth and fifth vibration mode with exactly the
same resonant frequency. Although a real test plate is never a perfect Poisson-
plate, the frequencies of the fourth and fifth mode will remain very close to
each other. This phenomenon complicates the experimental modal analysis
phase6. Potential problems can easily be avoided by choosing a plate that is
almost a Poisson-plate, e.g. a plate with a width that is 98 % of the optimal
width. Figure 6.6 shows that the peaks of the Poisson’s ratio sensitivities are
not very sharp; this means that a nearly optimal plate still has a very good
Poisson’s ratio sensitivity. But, such a plate has the additional advantage that
the frequencies of the fourth and fifth modes are well separated.

6.3. Layered Materials

In this section, the identification routines for non-layered materials are extended
to layered materials. All samples are considered to have perfectly bonded layers
with a uniform thickness. The layer materials are assumed to be homogeneous
and elastically orthotropic.

6.3.1. The Required Test Specimens

Chapter 5 showed that layered material identification requires a number of
purpose-built samples. To guarantee the uniqueness of the solution, the elastic
properties of nm layer materials have to be identified from the vibratory be-
haviour of a set of test samples that comprises samples with nc different layer
configurations, where nc > nm. Remember that an additional layer configu-
ration can only be created by changing the relative thickness of one or more
layers or by altering the layer sequence.
In some situations, the required layer configurations can be obtained quite
easily, e.g. coated materials. With coated materials, the required layer config-
urations can be produced by varying the thickness of the substrate or coating.
However, with some materials it is difficult or even impossible to change the
layer thickness or sequence. In that situation, the most obvious solution is to –

6The experimental test set-up is presented in appendix B.
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partially – remove one or more layers. The main difficulty of this approach is
to remove a part of the material without damaging the rest of the sample. An
alternative way to make an additional layer configuration is to add a layer to
the sample. If the properties of the added layer are known, i.e. are measured
before adding the layer to the sample, a new layer configuration is obtained
without introducing any new unknowns. Glass has proven to be an excellent
material for use as additional layer. Glass sheets are homogeneous, flat, have
a uniform thickness, are available with a variety of thicknesses and can easily
be cut to the correct size. Glass is also transparent, which means that the glue
layer between the glass layer and the initial sample can be inspected visually,
e.g. for the presence of air bubbles.
The creation of additional beam-shaped layer configurations is quite straightfor-
ward. Creating additional plate-shaped layer configurations is more challeng-
ing. Consider a layered plate for which the integrated stiffness in the x-direction
is considerably higher than the integrated stiffness in the y-direction. Assume
that the additional layer configuration is made by adding a glass layer to the
sample. Glass is an isotropic material and thus has the same stiffness in the
x- and y-direction. A combination of the initial plate with an additional glass
layer results in a material that is less anisotropic than the initial plate. The
optimal aspect ratio of this configuration is thus lower than the optimal aspect
ratio of the initial plate. So, in case of plate-shaped specimens, an optimal
aspect ratio has to be determined for every layer configuration7.

6.3.2. The Identification Routines

The three identification routines for non-layered materials can quite easily be
extended to layered materials by using the concept of multiple layer configura-
tions. During the experimental phase, the resonant frequencies of each sample
have to be measured for each considered layer configuration. The finite ele-
ment model library of the identification routine has to be extended with the
models of each measured layer configuration and the material database has to
be expanded so that it contains the elastic properties of each layer material.
Otherwise, the identification schemes for layered materials are similar to those
used for non-layered materials, i.e. the flowcharts of figures 6.8, 6.15 and 6.16.

Using Beam-Shaped Specimens

The Single-Orientation Routine — The layered version of the single-orienta-
tion routine requires nc sample configurations of a sample with a particular
material orientation. The fundamental flexural and torsional frequencies of
the test samples have to be measured for each layer configurations. The rou-
tine provides both E and ν of the layer materials as a direct output. The
shear modulus of the layers is obtained in a post-processing step as shown in
figure 6.8. Note that the discussion about the limitations of the non-layered
single-orientation routine applies also to the layered version, which translates
into correct results for isotropic materials, incorrect Poisson’s ratio values for

7Chapter 8 illustrates this problem with an experimental example.
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mildly orthotropic8 materials, and incorrect material properties for genuine
orthotropic materials.
The Multi-Orientation Routine — The multi-orientation approach requires
a set of beam-shaped samples, each of which represents a different material
orientation. The layered version of this technique requires nc layer configura-
tions of the complete sample set. The material orientations of the samples and
the used frequencies, i.e. fundamental flexural and/or torsional frequency, are
chosen in a similar way as for a non-layered material. The routine provides the
four orthotropic constants, E1, E2, G12, and ν12 for all the layer materials.

Using Plate-Shaped Specimens

The layered version of this identification routine requires the resonant frequen-
cies of the first five vibration modes of nc different layer configurations of the
test plate. Note that every layer configuration requires a particular aspect ra-
tio in order to ensure the sensitivity with respect to the Poisson’s ratios. The
routine provides the four orthotropic parameters of every material layer.

6.4. The General Vibration-Based MNET Framework

All identification routines presented in the two previous sections are applica-
tions of the same MNET approach. This section presents the mathematical
framework of the general identification problem. The implementation of a par-
ticular identification routine can be found by simplifying this general frame-
work, in accordance to the properties of the considered test procedure.

6.4.1. The Identification Routine

Figure 6.17 presents a detailed flowchart of the generalised identification pro-
cedure. Before the elastic properties can be identified, the resonant frequencies
of the considered modes of all the samples with their respective layer config-
urations have to be measured. The numerical part of the MNET procedure
requires a finite element model of every sample and layer configuration and a
database containing the elastic properties of the layer materials.
The identification of the elastic properties starts by computing the resonant fre-
quencies and mode shapes of the first five9 vibration modes of all test specimens
by using a set of trial values10 for the elastic properties of the different layer
materials. In the next step, the automatic mode shape recognition algorithm11

determines the mode shape type of the numerical modes. The frequency sensi-
tivities are computed from the numerical mode shapes and resonant frequencies
with (3.39). Since the mode shape types of both experimental and numerical
modes are known, the mode pairs can be identified and the frequency dif-
ferences can be computed. The sensitivity matrices and frequency difference

8Quasi isotropic materials, like sheet metals.
9The fundamental flexural and torsional modes of a beam-shaped specimen are normally

situated within the first five vibration modes.
10The trail values represent the order of magnitude of the elastic properties and are based

on the a priori knowledge about the material, .e.g. the class of material it belongs to.
11The automatic mode shape recognition algorithm is described in detail in chapter 3.
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vectors of all the test samples are assembled into one global sensitivity matrix
and frequency difference vector. The global sensitivity matrix and frequency
difference vector are inserted into the optimisation solver, which provides the
optimal parameter corrections. Finally, the elastic parameters in the material
database are updated, and the parameter corrections are compared to a pre-
defined convergence threshold. If one of the parameter corrections is larger
than the convergence threshold, a new iteration cycle is started, otherwise the
procedure is aborted and the identified elastic properties are retrieved from the
material database.

6.4.2. The Global Sensitivity Matrix

In case of a multi-specimen identification routine, the sensitivity matrices and
frequency difference vectors of the considered test samples have to be combined
into one global sensitivity matrix and frequency difference vector.
Consider an identification problem where the properties of nm layer materials
are identified from the resonant frequencies of ns test samples comprising nc

different layer configurations. Note that for identifiability reasons nc > nm.
Assume that the constitutive behaviour of these nm materials can be mod-
elled with np independent material parameters. For each sample, the resonant
frequencies of nfk

vibration modes are measured, where k denotes the sample
index. The relative frequency differences and normalised relative frequency
sensitivities are calculated for every test specimen. This yields the following
ns sets of equations.

{∆r}k = [S]k{∆p}, ∀k = 1, . . . , ns (6.6)

where {∆r}k ∈ Rnfk contains the relative frequency differences of the consid-
ered modes of the kth specimen, [S]k ∈ Rnfk

×np is the sensitivity matrix of
the kth specimen, and {∆p} ∈ Rnp groups the relative parameter variations of
different material properties. Equations (6.7) and (6.8) give the mathematical
expressions of these three components.
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In these expressions, f denotes resonant frequency, p represents a material
parameter, and the superscript between brackets specifies the iteration cycle.
The first subscript of the material parameters indicates the parameter number,
while the second subscript specifies the material index, e.g. p(i)

1,j denotes the first
parameter of the jth material during the ith iteration cycle. For each specimen,
a set of equations like (6.6) can be written. These ns sets can be combined into
one global set of equations as

{∆r1}
{∆r2}

...
{∆rns
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=


[S1]
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...
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]


︸ ︷︷ ︸

[S]

{∆p} (6.9)

where {∆r} is the global relative frequency difference vector and [S] is the
global sensitivity matrix. The parameter corrections {∆p} are found by solving
the system of equations (6.9) in a least-squares sense. The improved material
parameters are obtained as

p(i+1) = p(i)
(
1 + ∆p(i)

)
(6.10)

6.4.3. Constrained and Weighted Least-Squares

The sensitivity coefficients, from which the parameter corrections are derived,
are based on a linearisation of the response surfaces of the considered finite
element model, and are, therefore, only valid in the vicinity of the working
point; in other words, they are only valid for small parameter corrections. Large
parameter variations will not change the resonant frequencies as predicted and
will, most likely, result in an unstable behaviour of the iterative procedure.
Consequently, it is advisable to avoid large parameter corrections by using a
constrained least-squares cost-function. Constraints that bound the parameter
corrections during one iteration step to 25 % have proven to be sufficient to
stabilise the iterative procedure. Note that these bounds do not really have a
negative impact on the convergence rate, since they allow the parameters to
double or to halve in three iteration steps.
In some cases, it is also advisable to use a weighted least-squares cost-function.
Take the situation where the properties of a coating are identified from the
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resonant frequencies of three samples. The first sample (sample 1) is a pure
substrate, the other two samples (samples 2 and 3) are coated substrates.
One possible way to measure the properties is to identify them from the fre-
quencies of sample 1 and 2, or from the frequencies of sample 1 and 3. Due to
experimental errors and noise, these two sample sets result in slightly different
properties. The average of the properties obtained from the two sample sets is
usually taken as the final solution.
Alternatively, the elastic properties can be identified from the resonant fre-
quencies of all three samples with a single identification procedure. The main
advantage of this approach is the reduction of the computation time, i.e. there
are only three FE-models in the iteration procedure instead of four (= 2×2).
However, the alternative approach has an undesired side effect. The two layer
configurations, i.e. uncoated and coated, do not have the same importance.
Since two out of three sample are coated, the coated layer configuration has a
weight of 2

3 instead of 1
2 . Furthermore, it is actually quite common to have more

coated than uncoated samples, since the spread of the identified properties of
the coating is usually much higher than the spread of the substrate properties.
So, in most cases there is an imbalance between uncoated and coated layer
configurations. Fortunately, this imbalance can easily be restored by using a
weighted least-squares cost-function. If, in case of the considered example,
the weighting factors are fixed at 2, 1 and 1, the two layer configurations are
balanced and the alternative approach provides exactly the same result as the
initial procedure but in a computationally more efficient way.
In fact, the alternative approach is a much more natural way of using the
MNET procedures. Assume that there were three uncoated and six coated
specimens. With the initial approach it would become very unclear which
sample combinations should be used. Considering all eighteen possible com-
binations is very time consuming, since it requires the equivalent of thirty six
FE-models. For the same test configuration, the alternative approach using
weighted least-squares only requires nine FE-models, and is thus four times
faster.
To summarise, the most efficient approach to identify the elastic properties is
to define the cost-function using a weighted least-squares formulation, where
the weighting coefficients are chosen in such a way that the different layer
configurations are equally important, and solve it by imposing 25 % bounds on
the parameter corrections.

6.5. Numerical Validation

The parameter identification algorithm of the considered MNET can be numer-
ically validated with the following procedure: make the finite element models
of the specimens of a particular sample set, compute the resonant frequencies
of the samples using these finite element models, and identify the elastic ma-
terial properties with the MNET routine using the computed frequencies as
experimental frequencies. If the MNET routine is well conceived, the identified
properties will equal the material properties of the FE-models used to generate
the ‘experimental’ resonant frequencies.
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Table 6.7: The properties of the considered materials.

E1 E2 G12 ν12 ρ
Substrate 202 200 76 0.29 7800
Coating 60 60 25 0.20 3000

[GPa] [GPa] [GPa] [–] kg/m3

Consider a single-sided coated steel sheet, which is available in two layer con-
figurations: 200µm and 400 µm of coating. Both layer configurations use a
substrate with a thickness of 1mm. For every layer configuration, there is a
sample at a 0◦, 45◦, and 90◦ orientation. Figure 6.18 provides an overview of the
test sample set. Table 6.7 presents the material properties of both substrate
and coating materials.
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Figure 6.18: The considered sample set.

The six specimens of the considered sample set are modelled, and the resonant
frequencies of the fundamental flexural and torsional vibration mode are com-
puted. Subsequently, the elastic parameters of both substrate and coating are
identified from these resonant frequencies with the multi-orientation routine.
The starting values of the elastic parameters are randomly chosen in such a
way that no parameter differs more than 50 % of the correct value. Figure 6.19
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presents the numerical resonant frequencies for the different iterations steps.
It can be seen that the resonant frequencies converge to the correct values in
about three iterations steps.
Figure 6.20 presents the error in the elastic material parameters as a function
of the iteration step. All eight material parameters converge in a quick and
stable way to the correct values. The considered identification problem was
also solved with different sets of starting values. For all these sets, the material
parameters converged to the correct values in less than four iterations steps.
The single-orientation routine and the plate-shaped specimen-based MNET
routines were evaluated in a similar way. Both routines provided the correct
material parameters.
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The numerical validation tests of the MNET routines for layered materials
show that the routines provide the correct elastic parameters of the constituent
layers, if a sufficient number of layers configurations is being used. All three
MNET routines converge after a limited number of iteration steps.

6.6. Discussion, Conclusions and Overview

Table 6.8 gives an overview of the potential of the three identification routines
introduced in the previous sections: the single-orientation routine using beam-
shaped samples (SO), the multi-orientation routine that using beam-shaped
samples (MO), and the routine based on plate-shaped samples (PS).

Table 6.8: The potential of the three different MNET identification routines.

Isotropic Mildly orthotropic Genuinely orthotropic
Routine

E G E1 E2 G12 ν12 E1 E2 G12 ν12

SO ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗
MO ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
PS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ Can be identified.
✗ Cannot be identified.
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Table 6.9: Comparison of the three MNET identification routines.

SO MO PS
Isotropic materials + + +
Orthotropic materials − + +
Sample preparation + ◦ +
Layer configurations + + −
Robustness to curvature + + −
Robustness to edge damage ◦ ◦ +
Frequency measurements + ◦ ◦
High damping materials + + ◦
High temperature set-up + + −
Computation time + ◦ +

Table 6.9 compares the three considered MNET identification routines. The
ratings provided by table 6.9 are based on the following observations and con-
siderations:

- The SO routine has the major disadvantage that it cannot identify the
properties of orthotropic materials.

- Both SO and PS routines identify the properties from a single sample,
while the MO routine requires at least two samples with a different mate-
rial orientation. This implies that the multi-orientation has a more elab-
orate sample preparation phase.

- It is relatively easy to produce the required layer configurations for beam-
shaped samples. With plate-shaped specimens, this is much more compli-
cated. First of all, plates with different layer configurations usually have
a different optimal aspect ratio. Furthermore, it is also more complicated
to add an additional glass layer to a plate-shaped specimen than to a
beam-shaped specimen. Difficulties related to the sample preparation of
plate-shaped specimens include the elimination of air bubbles in the glue
layer or the formation of a glue layer with a uniform thickness.

- Appendix C shows that the resonant frequencies of plate-shaped samples
are very sensitive to an out-of-plane deformation of the sample, while the
resonant frequencies of beam-shaped samples are very robust to sample
deformations. Since it is impossible to avoid an out-of-plane deformation
of the substrate during a thermal coating process, the beam-shaped based
routines are preferred for the identification of coating properties.

- Machining test specimens out of a material sample may damage the sample
along its edges, especially in case of uni-directionally reinforced plastics
or brittle materials. Plate-shaped samples have a higher surface to edge
ratio than beam-shaped samples, hence the influence of the edge damage
is smaller.

- Measuring the resonant frequency of the fundamental flexural and tor-
sional mode of beam-shaped samples is fairly easy. Measuring the resonant
frequency of the first five modes of a plate requires a more complicated
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test set-up and a more experienced technician.
- In case of high damping materials, the degree of difficulty of measuring a

resonant frequency increases with the order and complexity of the vibra-
tion mode. Therefore, it is more convenient to measure the fundamental
flexural and torsional frequency of a number of beam-shaped specimens
than the resonant frequencies of the first five vibration modes of a plate-
shaped specimen.

- Measuring the resonant frequencies of a beam-shaped sample in a furnace
at high temperature is feasible with commercially available equipment.
Measuring the resonant frequencies of a plate-shaped sample at high tem-
perature requires a highly complicated test set-up.

- Computing the resonant frequencies of a finite element model of a beam-
shaped or plate-shaped sample with a converged mesh takes about the
same amount of time. From a computational point of view, the multi-
orientation routine is thus the slowest routine.

It is difficult to determine which routine is the best of the three, since the opti-
mal technique varies from material to material. However, experience shows that
the multi-orientation routine provides high quality results without an excessive
amount of work or inconvenient experimental problems. The information of
table 6.9 can be compiled into the following flowchart for selecting the optimal
MNET routine in function of the testing conditions.

Isotropic material

Curved specimens

Modifying samples with
thin glass (tglass < 1 mm)

High temperature
(Temp > 200◦C)

Edge damage

SO

MO PS

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

Advised Alternative

Start

Figure 6.21: Selection of the optimal MNET routine.
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6.7. Summary

This chapter provides an evaluation of the information contents of the reso-
nant frequencies of the out-of-plane vibration modes of beam- and plate-shaped
specimens. It is shown that a beam-shaped specimen only provides information
about the apparent elastic and shear modulus in the direction of the sample’s
long-axis. However, a set of beam-shaped specimens, all having a different
material orientation, or a plate-shaped specimen with a particular aspect ratio
provide enough information to estimate the four principal in-plane material
parameters of an orthotropic material. Using this knowledge, three vibration-
based MNETs are presented: a routine that can identify the elastic properties
of isotropic materials using beam-shaped specimens with the same material
orientation, a routine that can identify the elastic properties of orthotropic
materials using a set of beam-shaped specimens with a different material ori-
entation, and a routine that identifies the elastic properties of orthotropic ma-
terials using plate-shaped specimens. All three routines can be implemented
using the framework of a generalised vibration-based MNET procedure.
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7
Uncertainty Analysis

A measured value of a physical parameter is not really meaning-
ful, if it is not accompanied by a statement of its reliability or
quality. Such a reliability statement should be based on technical
and scientific knowledge, i.e. on objective facts. However, since a
judgement is involved, a reliability statement will always remain
subjective. General acceptance of such a quality judgement can
only be achieved, if it is clearly stated in which way this judgement
has been obtained. The aim of this chapter is to provide a transpar-
ent uncertainty analysis framework for the MNET-based material
identification techniques presented in the previous chapter.
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7.1. Essentials of Expressing Measurement Uncertainty

The Guide to the expression of Uncertainty in Measurement (GUM), published
by ISO1 [97], is a key document for evaluating the uncertainty of the output of
a measurement system. The ISO guide is not a standard in the conventional
sense. However, it has been accepted internationally as reference for the deter-
mination of the measurement uncertainty, and is also used as the foundation
of standards dealing with metrological subjects.

7.1.1. Basic Definitions

ISO defines the uncertainty of a measurement as “a parameter associated with
the result of a measurement that characterises the dispersion of the values that
could reasonably be attributed to the measurand” [97]. This parameter can be
a standard deviation, the width of a confidence interval2, etc.
Figure 7.1 presents the definition of the standard uncertainty, i.e. the interval
defined by one standard deviation. The GUM uses the standard uncertainty
as the basic measure of uncertainty. The ISO guide provides a framework for
computing the standard uncertainty of the measurand from the standard uncer-
tainty of measured input quantities using the law of uncertainty propagation.
This framework comprises the following four steps: specifying the measurands,
identifying the uncertainty sources, quantifying the uncertainty components,
and calculating the combined uncertainty.

σx

standard uncertainty

Figure 7.1: Definition of the standard uncertainty.

7.1.2. Step 1: Specifying the Measurands

In case of an indirect measurement, the measurands pi are not measured di-
rectly but are derived from nin other quantities q1, q2, . . . , qnin

through a
functional relation fpi

, often called the measurement equation.

pi = fpi
(q1, q2, . . . , qnin

) ∀i = 1, . . . , nout (7.1)

The GUM suggests to write down a clear statement of what is being measured,

1International Organisation for Standardisation (Geneva, Switzerland).
2A confidence interval is an interval in which a measurement corresponding to a given

probability falls [97]. The considered probability is usually referred to as confidence level.
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including the relationship between the measurand and the input quantities, i.e.
the measurement equations.

7.1.3. Step 2: Identifying the Uncertainty Sources

The measurement equations of (7.1) express the physical law between the mea-
surand and the input parameters. However, the equations used in the uncer-
tainty analysis should represent the measurement process rather than a fun-
damental physical law [98]. The equations should contain all quantities that
contribute a significant uncertainty to the measurement results. For example,
in case of MNET procedures, the analysis should also consider the uncertainty
introduced by the modelling errors associated with the FE-models of the test
samples.
The GUM advises to identify all the contributing uncertainty sources and ex-
tend the measurement equations, if necessary.

7.1.4. Step 3: Quantifying the Uncertainty Components

The GUM distinguishes two different types of input parameters based on the
way their uncertainty is evaluated: type-A and type-B. A type-A evaluation of
standard uncertainty may be based on any valid statistical method for treating
data, e.g. calculating the standard deviation of the mean of a series of inde-
pendent observations. A type-B evaluation of standard uncertainty is usually
based on scientific judgement using all of the relevant information available.
This may include: previous measurement data, experience with the employed
instruments, manufacturer’s specifications, calibration data, and uncertainties
assigned to reference data taken from handbooks.
The GUM requires a measure or estimate of the standard uncertainty associated
with each potential uncertainty source.

7.1.5. Step 4: Calculating the Combined Uncertainty

The combined standard uncertainty of the measurand, uc(pi), is calculated
from the standard uncertainty of the uncertainty sources, u(qj), as

uc(pi) =
√∑

j

(
sij u(qj)

)2 (7.2)

where sij is the sensitivity coefficient3 of the measurand pi with respect to
the uncertainty source qj . The GUM assumes the knowledge of distribution of
the measurand pi, since otherwise it is impossible to assign a confidence level
to the standard uncertainty. If the measurand has a normal distribution, the
standard uncertainty is associated with a confidence level of 68.3 %.

7.1.6. Expanded Uncertainty

The GUM also introduces the expanded uncertainty (ue), and defines it as “the
interval about the result of a measurement that may be expected to encompass

3The sensitivity coefficients in (7.2) are absolute sensitivities.
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a large fraction of the distribution of values that could reasonably be attributed
to the measurand”. The expanded uncertainty is obtained by multiplying the
combined uncertainty by a coverage factor (k), which is determined by the
required level of confidence. For a normal distribution, the coverage factor and
confidence level are related as [99]

Pkσ = erf
(
k√
2

)
or k =

√
2 erf−1(Pkσ) (7.3)

in which erf(z) is the error function4, and Pkσ = P (µ − kσ < x < µ + kσ) is
the probability that a measurement falls within k standard deviations σ of the
mean µ. The first equation of (7.3) provides the confidence level of a given
coverage factor, while the second equation provides the coverage factor corre-
sponding to a particular confidence level. Note that for k = 1, Pkσ represents
the confidence associated with the standard uncertainty. Other commonly used
coverage factors are 2 and 3, which correspond to confidence levels of 95.5 %
and 99.7 %, respectively, in the case of a normal distribution.

7.2. The Uncertainty Sources

It is important to make a clear distinction between error and uncertainty. Error
is defined as the difference between an individual result and the true value5 of
the measurand. As such, an error is a single value. In principle, the value
of a known error can be applied as a correction to the result. Uncertainty,
on the other hand, takes the form of a range that characterises the dispersion
of the considered quantity. The value of the uncertainty cannot be used to
correct a measurement result. Error and uncertainty are of course related, i.e.
uncertainty is the result of errors with an unknown amplitude.

7.2.1. Measurement Errors

Roughly spoken, it is possible to classify each measurement error as one of the
following three types: an illegitimate error, a systematic error, or a random
error.
Illegitimate errors are mistakes and blunders caused by carelessness or poor
judgement, e.g. misreading the display of the measurement device. Since ille-
gitimate errors can be avoided, they are disregarded in the remainder of this
text.
A systematic error can be defined as a reproducible error that biases the mea-
sured value in a given direction [98], i.e. a systematic overestimation or under-
estimation of the true value. A systematic error is by definition reproducible,
it can, therefore, not be reduced by averaging the values of a large number
of measurements. However, the reproducible character of the systematic error
makes it possible to estimate the bias on the measured value by means of a
calibration procedure. The systematic error can then be compensated with the
estimated value of the bias. Note that systematic errors can only be reduced

4erf(z) = 2√
π

R z
0 e−t2 dt

5The value that is consistent with the definition of a particular quantity [100].
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by calibrating the measurement equipment, they cannot be avoided.
A random error causes fluctuations in the results of a measurement when the
measurement is repeated a number of times [98]. Random errors are errors,
which fluctuate from one measurement to the other. They yield results that
are distributed about a mean value. Random errors occur for a variety of
reasons, and are usually attributed to noise or other external disturbances that
cannot be taken into account. Unlike systematic errors, random errors displace
the measured value in an arbitrary direction. This stochastic behaviour allows
the reduction of random errors by averaging the results of a large number of
measurements.

7.2.2. Modelling Errors

The MNET procedures require a numerical model of the used test specimens.
The assumptions made to build these models result in an error on the numerical
frequencies, and eventually in an error on the identified material parameters.
The beam- and plate-shaped test specimens are assumed to have a uniform
length, width, thickness, and mass density. But even for carefully machined
samples, both length and width vary slightly along the edges, the thickness
varies over the surface of the sample, and the mass density varies from point
to point in the material. Furthermore, the elastic properties that have to be
identified vary, to a certain extend, from point to point in the test sample.
The assumption of a material with uniform elastic properties will thus also
introduce a modelling error.
The importance of the error introduced by these assumptions was evaluated in
detail in [101]. The evaluation indicated that a systematic error on the proper-
ties of the sample has a much larger impact on the resonant frequencies than a
randomly distributed point-wise variation. The observed influence of the sys-
tematic error was a few orders of magnitude larger than the error resulting from
the homogenisation of the sample proprieties. This implies that the modelling
errors can be ignored, as long as the variation of the homogenised parameters
is random.
The discretisation error of the finite element models also introduces an error
on the numerical frequencies. Although the discretisation error is small, due
to the use of converged finite element models, it should not be ignored.

7.2.3. Conclusions

The MNET procedures require the experimental values of the following quan-
tities: length, width, thickness, mass and resonant frequencies of the samples.
All these quantities can be accurately measured using a calliper, micrometer,
balance, and digital frequency analyser. When the test specimens are carefully
machined out of a uniform material sample, the spread of the measured quanti-
ties is much lower than the uncertainty of the offset of the measurement device.
In this situation, it is advisable to use the accuracy of the measurement device
as uncertainty of the measured quantities. In GUM terminology, this implies
that all the input uncertainties are uncertainties of type-B.
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7.3. First-Order Approximation of the MNET Equations

The application of the GUM method to evaluate the measurand uncertainty
according to (7.2) requires the sensitivity coefficients of the measurands with
respect to the measured input quantities. Since MNET procedures are nu-
merical routines, it is impossible to obtain the sensitivity coefficients through
analytical derivation. A direct numerical evaluation of the sensitivity coeffi-
cients, e.g. using a finite difference approach, would be very time consuming,
since an MNET procedure contains one or more finite element models in its
iteration loop. A more practical approach is to linearise the MNET using the
solution of the last iteration step as working point. In that case, the derivation
of the sensitivity coefficients is straightforward since the sensitivities are the
coefficients of the linearised MNET equations.

7.3.1. Single-Model Routines

Linearising the response surfaces of the finite element model by computing the
first-order Taylor approximation at the point defined by the model parameters
provides relation (7.4). This equation describes the influence of a variation of
the model parameters on the resonant frequencies of the test specimen. For
convenience, the model parameters are divided into two groups: the elastic
material parameters p, and the sample parameters s

{∆f} = [Sp]{∆p}+ [Ss]{∆s} (7.4)

in which vector {∆p} contains the applied elastic parameter changes, vector
{∆s} contains the applied changes of the sample’s length, width, thickness and
mass, matrix [Sp] groups the sensitivity coefficients of the resonant frequencies
with respect to the elastic material parameters, matrix [Ss] groups the sensitiv-
ity coefficients of the resonant frequencies with respect to geometry and mass,
and vector {∆f} provides the resulting frequency changes.

In general, the set of equations (7.4) is overdetermined and can, therefore, not
be inverted in a direct way. In the MNET procedure, {∆p} is obtained by
considering a weighted least-square problem. The inverse of (7.4) can thus be
expressed as

{∆p}=
(
[Sp]T[W ][Sp]

)−1

[Sp]T[W ]
(
{∆f} − [Ss]{∆s}

)
(7.5)

= [Sp]†w

(
{∆f} − [Ss]{∆s}

)
(7.6)

= [Sp]†w {∆f}︸ ︷︷ ︸
frequency

contribution

−[Sp]†w [Ss]{∆s}︸ ︷︷ ︸
geometry & mass

contribution

(7.7)

Expression (7.7) allows the conversion of a variation of the resonant frequencies,
sample geometry and mass into a variation of the obtained material parameters.

By grouping the terms of (7.7) as
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[χ] =
[
[Sp]†w −[Sp]†w [Ss]

]
(7.8)

{∆q}=
{
{∆f}
{∆s}

}
(7.9)

The influence of a change of the resonant frequencies and sample parameters
on a particular elastic material parameter can be written as

∆pi =
∑

j

χij ∆qj (7.10)

The χ matrix thus groups the sensitivity coefficients of the measurands pi with
respect to the input parameters qj .

7.3.2. Multi-Model Routines

The first-order MNET approximation can easily be extended to multi-model
identification routines. Consider a multi-model identification routine that uses
resonant frequencies of ns different test samples. The following set of equations
can be written for each of the ns models{

∆f (k)
}

=
[
S(k)

p

]
{∆p}+

[
S(k)

s

]{
∆s(k)

}
∀k ∈ 1, . . . , ns (7.11)

in which the superscript �(k) indicates that a particular quantity of the kth spe-
cimen is being considered. The equations of all the test samples can be com-
bined into one global system of equations as{

∆fglob
}

=
[
Sglob

p

]
{∆p}+

[
Sglob

s

]
{∆s} (7.12)

where {∆fglob} and {∆sglob} are the global frequency and sample parameter
difference vector, while the matrices [Sglob

p ] and [Sglob
s ] are the global sensitiv-

ity matrices for the material properties and sample parameters, respectively.
{∆fglob} and {∆sglob} are both block vectors, where the kth block line contains
the data of the kth specimen, or

{
∆fglob

}
=


{
∆f (1)

}
...{

∆f (ns)
}
 {∆sglob} =


{
s(1)
}

...{
s(ns)

}
 (7.13)

The matrices [Sglob
p ] and [Sglob

s ] are both block matrices and are defined as

[
Sglob

p

]
=


[
S

(1)
p

]
...[

S
(ns)
p

]
 [Sglob

s ] =


[
S

(1)
s

]
· · · [0]

...
. . .

...
[0] · · ·

[
S

(ns)
s

]
 (7.14)

Expression (7.12) can be inverted in a similar way as equation (7.4). The
inversion provides the changes in the elastic parameters as a function of the
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resonant frequency and sample parameter changes as

∆pi =
∑

j

χij ∆qj (7.15)

where [χ] and {∆q} have the same structure as specified by (7.8) and (7.9),
but are calculated using the global vectors and matrices as defined by (7.13)
and (7.14).

7.3.3. Extending the Measurement Equations

The linearisation of the MNET equations provides

{∆p} = [Sp]†w

(
{∆f} − [Ss]{∆s}

)
(7.16)

This equation represents the physical relation between the input parameters
and the measurands. As advised by the GUM, the measurement equations
should be expanded in such a way that they include all the uncertainty sources.
Equation (7.16) takes all the uncertainty related to the experimental errors
into account, i.e. the uncertainty of the experimental frequencies, the sample
dimensions, and the sample mass. However, there is also an uncertainty of
the numerical frequencies due to the discretisation error. To take this addi-
tional uncertainty source into account, the measurement equations have to be
extended as

{∆p} = [Sp]†w

(
{∆fexp}+ {∆fnum} − [Ss]{∆s}

)
(7.17)

7.4. The Probabilistic Approach

Traditionally, the uncertainty of measured quantities is characterised by means
of probability distributions and confidence intervals. The probabilistic ap-
proach aims at estimating the confidence intervals of the identified material
parameters from the probability distributions of the measured quantities.

7.4.1. Verification of the Analytical Approach

The GUM suggests to evaluate the measurand uncertainties with expression
(7.2). The UNCERT code of practice 13 [102] presents a GUM compliant
framework to handle uncertainties in the material identification procedures de-
scribed in the ASTM6 and CEN7 standards. Remember that the application
of the GUM requires the type of the distribution of the measurand values.
The UNCERT code of practice assumes that all the input and output parame-
ters are normally distributed. However, it does not present any justification
for the assumption of normally distributed measurand values, therefore, this
assumption has to be verified.
Monte Carlo simulations provide an alternative approach to evaluate uncer-

6The routines of the ASTM standard are presented in appendix [4].
7Comité Européen de Normalisation: prEN 14146, Determination of dynamic elastic mod-

ulus by measuring the fundamental resonant frequency, European norm under approval.
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tainty, and are useful for validating the results produced by the application
of the GUM [103]. By propagating the distributions rather than just the
uncertainty of the inputs qj through the measurement model, Monte Carlo
simulations provide much richer information. The simulations produce the dis-
tribution of the outputs pi, which can then be used to determine the confidence
intervals, or other statistical information. If no agreement with GUM results
is observed, “it is appropriate to regard the Monte Carlo results as being sci-
entifically more sound” [103].
To verify the procedure proposed in the UNCERT Code of practice [102], the
obtained results are validated with a Monte Carlo simulation, and this for
one particular test case. Consider the identification of the elastic and shear
moduli of the steel beam described in table 7.1 with the ASTM procedure.
The two elastic moduli are identified from the beam’s fundamental flexural
and torsional frequency using formulas (A.1) and (A.3). The plots of figure 7.2
show the histograms of the output distributions of the Monte Carlo simulation.
The assumption of a normal probability distribution of E and G is obviously
incorrect.

Table 7.1: The properties of the considered steel beam.

l [mm] w [mm] t [mm] m [g] ff [Hz] ft [Hz]
100.00 20.00 1.500 23.400 797.47 2367.66
±0.02 ±0.01 ±0.003 ±0.001 ±0.80 ±2.37
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Figure 7.2: Histograms of the Monte Carlo output distributions for E and G.

Figure 7.3 compares the confidence intervals obtained using the method pro-
posed by the UNCERT code of practice with the intervals obtained using Monte
Carlo simulations. The code of practice approach appears to underestimate
the interval bounds for confidence levels lower than 90 %. For confidence lev-
els higher than 90 %, the code of practice procedure overestimates the interval
bounds. These problems are caused by the erroneous assumption that the
measurand values are normally distributed. Because of this, there is no jus-
tification behind the assumption that the standard uncertainty obtained with
(7.2) is associated with a confidence level of 68.3%.
Table 7.2 presents the numerical results for the standard and expanded uncer-
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Figure 7.3: Comparison between the confidence intervals obtained with the
analytical and the Monte Carlo approach.

tainty. For these two confidence levels, the difference between the two methods
is about 10 % for both E- and G-modulus. Note that Monte Carlo simula-
tions of other test cases reveal measurand probability distributions that differ
from the distributions of figure 7.2. It is thus impossible to make an a priori
statement about the probability distribution of the identified parameters.

Table 7.2: Comparison of the confidence intervals of the measurands esti-
mated with the code of practice (CoP) and Monte Carlo (MC).

Width confidence interval of E
MC [GPa] CoP [GPa] Diff. [%]

us(68.3 %) 1.74 1.54 13.0
ue(95.5 %) 2.80 3.06 −8.5

Width confidence interval of G
MC [GPa] CoP [GPa] Diff. [%]

us(68.3 %) 0.64 0.58 10.3
ue(95.5 %) 1.04 1.18 −11.9

7.4.2. Estimation of the Confidence Intervals

The procedure proposed in the code of practice [102] requires the knowledge of
the probability distribution of obtained material parameters. Simulations have
shown that this distribution varies from case to case. Simply assuming that
the measurand values are normally distributed results in significant errors on
the bounds of the confidence intervals. Furthermore, in the case of layered ma-
terials, the input uncertainties are no longer uncorrelated, implying that (7.2)
is no longer valid. Extending (7.2) to correlated uncertainties is possible, but
complicated. However, correlated input uncertainties do not pose any serious
problems with the Monte Carlo approach. Because there is a computationally
efficient linear approximation of the MNET procedure available, it makes more
sense to estimate the confidence intervals with Monte Carlo simulations than
with an extended version of expression (7.2).
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Non-Layered Materials

A Monte Carlo simulation requires a sequence of input values for every input
parameter. Because the uncertainty of the input parameters is mainly deter-
mined by the accuracy of the measurement device8, the input parameters are
assumed to have a uniform probability distribution between their upper and
lower bound. The first step consists of creating a sequence of ∆qj values for
every input parameter, using a random number generator configured to pro-
duce a uniformly distributed set of test values that respects the upper and
lower bounds imposed on the considered parameter. The input distortion se-
quences are then fed into the extended MNET equations (7.17), which provide
the output parameter distortion sequences V∆pi

. The easiest way to find the
confidence intervals is to sort the elements of V∆pi

in ascending order. For the
example discussed in the previous section, this results in the plot of figure 7.4.
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Figure 7.4: The sorted E-modulus distortions V∆E .

The confidence interval for a confidence level α can now easily be found by
taking the first α

2 % samples on the left and right side of the mean value. For
example, in case of figure 7.4, there are one million Monte Carlo samples. The
sample with a value closest to the mean value is sample 499976. This implies
that the confidence interval of 80% is bounded by the values of samples 99976
(= 499976− 400000) and 899976 (= 499976 + 400000).

Layered Materials

In case of layered materials, not all the input uncertainties are uncorrelated.
The uncertainties of the layer thicknesses are not independent, since the sum
of all the layer thicknesses must equal the total sample thickness.
The uncertainties of the length, width, mass and resonant frequencies are still
uncorrelated, and the Monte Carlo sample sequences can be generated as de-
scribed in the previous section. The sequence of the layer thickness values is
generated in a slightly different way. For each layer, a thickness distortion
value is generated using a random number generator configured to produce
uniformly distributed numbers. All the layer thickness distortions are added

8As explained in section 7.2.
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to get the distortion on total sample thickness. If the total sample thickness
distortion complies with the imposed bounds, the thickness value set is added
to the Monte Carlo sequence, otherwise the thickness value set is rejected. This
process is to be repeated until a sequence with the required length is obtained.
Like in the case of non-layered materials, the Monte Carlo sequences are pro-
cessed by feeding them into the extended MNET equations (7.17). The con-
fidence intervals are derived from the output sequences as described in the
previous section.

7.5. The Non-Probabilistic Approach

The uncertainty of the input parameters of the MNET routine is mainly deter-
mined by the accuracy of the measurement device used to measure the consid-
ered input quantity. The accuracy of the measurement device defines an upper
and lower bound of the value of the input parameter, it does not provide the
probability distribution of the input parameters.
The probabilistic approach that was presented in the previous section requires
the probability distribution of the input parameters of the MNET routine. As
explained, this information is not available. In the probabilistic approach, this
problem is overcome in a pragmatic way by assuming a uniform distribution of
the input parameters. An alternative solution is to consider a non-probabilistic
approach. Non-probabilistic methods aim at estimating the uncertainty of the
output parameters without using the probability distributions of the input
parameters.

7.5.1. Uncertainty Intervals

An uncertainty interval defines an upper and lower bound between which the
value of the considered parameter can vary. It does not provide any information
about the probability distribution of the values between the upper and lower
bound. The following notation is used to represent an uncertainty interval

qj ∈ [q
j
, qj ] ∀j = 1, . . . , nin (7.18)

where qj is one of the nin uncertain input parameters of the model, and can
take any value larger than or equal to q

j
and smaller than or equal to qj . By

considering the relations between the input and output parameters fpi

pi = fpi
(q1, q2, . . . , qnin

) ∀i = 1, . . . , nout (7.19)

the input intervals can be used to derive the uncertainty intervals of the output
parameters pi.

pi ∈ [p
i
, pi] ∀i = 1, . . . , nout (7.20)

The lower bound p
i

of this interval is the lowest possible value that can be
obtained for the output parameter pi, when all the input parameters qj can
take any value between q

j
and qj . The upper bound pi represents the highest

possible value that can be obtained for the output parameter pi. The bounds
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of the output intervals can be interpreted as worst-case values.

7.5.2. Interval Calculations

The most straightforward way to perform calculations with intervals is to re-
define the standard mathematical operators like additions, subtractions, multi-
plications, and divisions in such a way that they can handle intervals instead of
the traditional integers or floats. This approach is generally referred to as the
interval arithmetic approach, and is mainly based on the work of Moore [104].
The interval arithmetic approach has two major drawbacks. The first drawback
deals with the practical problem of implementation. The use of the interval
arithmetic concept to estimate the uncertainties of the material parameters
implies that the whole identification procedure, i.e. finite element routines,
sensitivity analysis and cost-function minimisation, has to be reimplemented
using interval operations. The second drawback is a phenomenon that is called
conservatism, and can be illustrated with the following example: consider a
variable x that varies between 0 and 1, and calculate the interval of the vari-
able y if y = x2 − x. The application of the interval arithmetic approach
results in the following solution: y ∈ [−1, 1]. However, the correct solution
to this problem is y ∈ [−0.25, 0] and can only be obtained, if the correlation
between x and x2 is taken into account. This simple example clearly indicates
that ignoring existing variable correlations yields erroneous results. More de-
tails about the presented example, together with an extensive discussion on
the conservatism induced by interval arithmetics can be found in [105]. So far,
it has not been investigated whether it is possible to keep track of the exist-
ing correlations between the variables of complex numerical procedures. With
the current state of affairs, it is not possible to avoid conservatism in complex
routines like finite element solvers. Therefore, the use of interval arithmetics
should not be considered to handle uncertainties in MNET-based identification
routines.
An alternative way to solve the interval arithmetical problem, is to reformulate
it as a constrained optimisation problem where the input variables qj are the
optimisation parameters, and the input-output relation is the cost-function.
The upper bound of the uncertainty interval of a particular output parameter
pi can be found by maximising the cost-function, i.e. the value of the output
parameter pi, while considering the bounds of the uncertainty intervals of the
input parameters as constraints on the optimisation parameters.

pi→maximise fpi(q1, . . . , qnin)
subject to qj > q

j
∀j = 1, . . . , nin

qj 6 qj ∀j = 1, . . . , nin

(7.21)

The lower bound of the uncertainty interval can be found by minimising the
cost-function, using the same constraints on the optimisation parameters. Now,
consider an nin dimensional space, of which each point defines a unique set of
values for the various input parameters. In this input parameter space, the
constraints of (7.21) define an nin-dimensional hypervolume. Only the points
inside this hypervolume are valid points, i.e. points associated with parameter
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values that comply to the considered parameter intervals. One of the commonly
used approaches in solving the optimisation problem (7.21) is to sample the
hypervolume defined by the input parameter intervals, and to calculate the
values of the output parameters for every sample. The highest and lowest
value obtained for a particular output parameter defines the upper and lower
bound of the uncertainty interval of this parameter. Figure 7.5 presents a two
dimensional example. A general implementation of this approach was proposed
by Hanss [106, 107] and is called ‘the standard transformation method’. The
procedure is applicable to a wide variety of problems, but has a number of
important shortcomings. The total number of sampling points that has to
be evaluated equals mnin, where m represents the number of sampling points
used to sample one uncertainty interval, e.g. m equals 8 in case of figure 7.5.
With the standard method, the total number of sampling points, and thus
the necessary computation time, increases exponentially with the number of
input parameters. A second drawback is that the obtained results are only
approximations of the true intervals, unless both minimum and maximum of the
cost-function happen to coincide with a sampling point. In the example of figure
7.5, the true maximum of the cost-function is found, but the obtained minimum
is an approximation. The accuracy of the solution can only be improved by
decreasing the sampling distance, which leads to an exponential increase in
sampling points. A small improvement of the accuracy is, therefore, associated
with a dramatic increase of the required computation time.
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Figure 7.5: A two-dimensional example of the standard transformation me-
thod.

These two drawbacks are absent when the relations between the input and
output parameters fpj

are monotonic functions, as shown in figure 7.6. In case
of monotonic input-output relations, the extreme values of the output parame-
ters have to lay in points where the different input parameters are maximal or
minimal. This means that only the sampling points located on the vertices of
the hypervolume have to be considered; all the other sampling points may be
ignored, since they cannot lead to an extreme value of any of the output para-
meters. Monotonicity of the input-output relations thus reduces the number of
sampling points that must be evaluated down to 2nin. Monotonicity also guar-
antees the exactness of the obtained interval bounds, since the extreme values
of the cost-function are achieved in the locations of the sampling points. The
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procedure that only considers the vertex points is called ‘the reduced transfor-
mation method’.
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Figure 7.6: A two-dimensional example of the reduced transformation me-
thod.

7.5.3. Computing the Uncertainty Intervals

In case of MNET identification procedures, even the application of the reduced
transformation method requires an extensive computational effort. Consider a
multi-orientation procedure using three beam-shaped specimens. Such a rou-
tine has eighteen input parameters. The application of the reduced transforma-
tion method requires 218 = 262144 runs of the identification procedure. Even
with a computer platform that could run the whole identification procedure in
one second, the uncertainty analysis would take about 3 days. However, the
use of the linear approximation of the MNET procedure provides a dramatic
reduction of the computation cost. Also note that the use of the linearised
MNET automatically ensures the monotonicity of the input-output relations.

Non-Layered Materials

By linearising the MNET equations, the variation of the measurand pi caused
by the variation of the input parameters qj can be expressed as

∆pi =
∑

j

χij ∆qj (7.22)

To obtain the bounds of the uncertainty interval of the material property pi,
the maximum and minimum of ∆pi have to be calculated. To maximise ∆pi,
the contributions of the different summation terms χij∆qj

(
= ∆pij

)
have to

be maximised. To express the maximum value of ∆pij
in function of the input

uncertainties, two different cases have to be considered. In the case where χij

is non-negative, the maximum of the contribution of the input parameter qj is
given by

max ∆pij
= χij ∆qj (7.23)

where ∆qj is the upper bound of the uncertainty interval of qj . When χij is
negative, the maximum of the contribution to pi is given by
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max ∆pij
= χij ∆q

j
= |χij |∆qj (7.24)

where ∆q
j

is the lower bound of the uncertainty interval of qj . The second
equality of equation (7.24) is valid, since the uncertainty intervals of the input
parameters are assumed to be symmetrical, i.e. ∆qj = −∆q

j
. The combination

of (7.23) and (7.24) provides the following expression of the maximum of ∆pi.

max ∆pi =
nin∑
j=1

|χij |∆qj (7.25)

The expression for the minimum of ∆pi can be derived in a similar way. Elab-
oration of the problem shows that

min ∆pi =
nin∑
j=1

|χij |∆qj
= −max ∆pi (7.26)

which implies that the uncertainty intervals of the identified material properties
are also symmetric. Also note that the relative importance of the uncertainty of
a particular input parameter qj in the total uncertainty of the material property
pi can be expressed as

|χij |∆qj
nin∑
k=1

|χik|∆qk

(7.27)

Equation (7.27) allows the identification of the principal sources of uncertainty
of a particular material parameter.

Layered Materials

As explained in section 7.4.2, the uncertainties of the layer thicknesses are corre-
lated. As in the probabilistic approach, this correlation requires an adaptation
of the uncertainty analysis routine.
The routine that was introduced for non-layered materials uses only sampling
points on the vertices, i.e. the upper and lower bounds of the input parameters,
and is, therefore, a clear application of the reduced transformation method.
The correlation of the layer thickness uncertainties has two important conse-
quences for the computation of the uncertainty bounds: first, every considered
combination of input parameters has to be checked with respect to whether
it violates any of the input parameter relations. Moreover, there is no longer
any guarantee that the worst-case parameter combination is situated on one of
the vertices of the parameter space. This implies that the uncertainty intervals
should be computed with the standard transformation method.
The optimal approach is to divide the uncertainty analysis into two steps. Dur-
ing the first step, only the length, width, mass, and resonant frequencies are
considered. Since the uncertainties of these parameters are still uncorrelated,
the overall uncertainty they introduce can be evaluated with the method pre-
sented in the previous section. The second phase computes the uncertainty
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introduced by the layer thicknesses. This can be done by sampling the un-
certainty intervals of the layer thicknesses. All the obtained layer thickness
combinations have to be checked to see whether they are feasible or not, i.e.
whether their sum lays within the uncertainty bounds of the total thickness,
and the infeasible sets have to be rejected. The feasible sets of layer thicknesses
are processed with the linearised MNET equations to find the associated mate-
rial parameters. The uncertainty contribution of the layer thicknesses is found
as the minimum and maximum of the obtained material parameters.
Eventually, the total uncertainty is obtained by adding up these two uncer-
tainty contributions. Note that the obtained uncertainty intervals are only an
approximation of the true uncertainty. The accuracy of the obtained intervals
depends on the sampling density of the layer thicknesses.

7.6. Examples

7.6.1. Comparison of the Probabilistic and Non-Probabilistic Approach

The goal of this first example is to compare the results of the probabilistic
approach with the results of the non-probabilistic approach. Consider a brass9

plate with the following dimensions: 100×100×1 mm. The material properties
are determined from the first five resonant frequencies of the test plate, using
the routine of section 6.2.2. Table 7.3 provides the uncertainty of the input
parameters.

Table 7.3: The values and uncertainties of the input parameters.

Value Units Uncertainty interval Bounds Units
Length 100.00 [mm] 99.98 — 100.02 ± 0.02 [mm]
Width 100.00 [mm] 99.98 — 100.02 ± 0.02 [mm]
Thickness 1.000 [mm] 0.998 — 1.002 ± 0.002 [mm]
Mass 82.000 [g] 81.999 — 82.001 ± 0.001 [g]
Freq-1 225.71 [Hz] 225.26 — 226.16 ± 0.2 [%]
Freq-2 330.49 [Hz] 329.83 — 331.15 ± 0.2 [%]
Freq-3 427.37 [Hz] 426.52 — 428.23 ± 0.2 [%]
Freq-4 587.01 [Hz] 585.83 — 588.18 ± 0.2 [%]
Freq-5 592.32 [Hz] 591.13 — 593.50 ± 0.2 [%]

The plots of figure 7.7 present the uncertainty and confidence intervals of the
material parameters. The confidence intervals are calculated using 106 Monte
Carlo samples. To avoid overloading the plots, figure 7.7 presents only the
first 1000 Monte Carlo samples. The results clearly show that all the Monte
Carlo samples are situated within the uncertainty intervals, which is strictly
necessary since the uncertainty interval bounds represent the worst-case values.
The probability to obtain one of the worst-case values is extremely low, but
not zero.
Table 7.4 shows the relative contributions of the input parameters to the un-
certainty of the output parameters as obtained with expression (7.27). The

9The brass properties are given in table 6.1.



158 7.6. EXAMPLES

Uncertainty of E1 [%]

C
o
n
fi
d
en

ce
[%

]

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
100

80

60

40

20

0

Uncertainty of E2 [%]

C
o
n
fi
d
en

ce
[%

]

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
100

80

60

40

20

0

Uncertainty of G12 [%]

C
o
n
fi
d
en

ce
[%

]

-1 -0.5 0.0 0.5 1.0
100

80

60

40

20

0

Uncertainty of ν12 [%]

C
o
n
fi
d
en

ce
[%

]

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
100

80

60

40

20

0

Confidence interval Uncertainty interval Monte Carlo sample

Figure 7.7: The uncertainty and confidence intervals of the material parame-
ters.

uncertainty of the two Young’s moduli and the shear modulus is dominated by
the thickness uncertainty, which implies that an accurate determination of the
thickness is necessary to obtain reliable material properties. The uncertainty of
Poisson’s ratio is mainly controlled by the uncertainty of the resonant frequen-
cies. The uncertainty of both specimen thickness and mass does practically not
influence the uncertainty of Poisson’s ratio. This observation can be explained
as follows: the change of the thickness or the mass has the same effect on all the
resonant frequencies of the test plate, which means that there is no effect on
the relative difference between the resonant frequencies. Since Poisson’s ratio is
not controlled by the absolute values of the resonant frequencies but by the rel-
ative difference between the various frequencies [5], the uncertainty of the mass
or thickness does not affect the uncertainty of Poisson’s ratio. Note that this
conclusion is only valid for plate-shaped specimens, in the case of beam-shaped
specimens the uncertainty on the thickness will influence the uncertainty of
identified Poisson’s ratio.

Table 7.4: The relative contributions of the various input parameters to the
uncertainties of material properties.

Input parametersProp.
f1 f2 f3 f4 f5 l w t m

Units

E1 2.1 9.4 2.8 17.5 21.2 4.1 1.3 41.5 0.1 [%]
E2 1.8 10.3 3.1 19.7 17.2 1.5 4.3 42.1 0.1 [%]
G12 13.7 3.1 3.6 6.9 6.8 2.0 2.1 61.7 0.1 [%]
ν12 0.4 30.7 31.2 15.8 14.9 3.5 3.5 0.1 0.0 [%]
Mean 4.5 13.4 10.2 15.0 15.0 2.8 2.8 36.3 0.1 [%]
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The material properties can also be derived from the resonant frequencies of
more than one test plate. Figure 7.8 shows the uncertainties obtained for E1

using one, two, three, and four test plates. The two uncertainty approaches
react in a completely different way. Increasing the number of test samples
leads to narrower confidence intervals, while the uncertainty intervals remain
constant. By using a higher number of test samples, the number of input pa-
rameters changes and the chance that a worst-case value is obtained decreases.
However, the worst-case values themselves do not depend on the used number
of samples.
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Figure 7.8: The influence of the size of the test sample set.

The comparison between the two uncertainty approaches leads to the conclu-
sion that each approach has its own field of application. The probabilistic
approach is the optimal approach to estimate the uncertainties of the material
properties of an actual experiment, because the reliability of the obtained para-
meters increases with an increase of the number of used samples. Furthermore,
probability and confidence intervals are concepts that are widely accepted in
the world of experimental testing. On the other hand, it is advisable to use the
non-probabilistic approach for determining the optimal configuration of the ex-
periment. The uncertainty intervals that are provided by the non-probabilistic
approach are independent of the number of used samples. This is an essen-
tial quality of a method that is used to compare different test configurations.
Consider two multi-orientation routines, the first one uses test beams of three
material directions, the second one uses test beams of six material directions.
Assume that the probabilistic approach would be used to compare these two
test configurations. The confidence intervals of the second test configuration
would be narrower than those of the first configuration, simply because the sec-
ond test averages the results of six samples instead of three. The correct way to
compare the two methods with the probabilistic approach is to use two samples
in each direction for the first test. In this way, both tests use the same number
of samples. The non-probabilistic approach, of which the results are indepen-
dent of the number of samples, is clearly better suited to compare the quality
of different test configurations. Also remember that the non-probabilistic ap-
proach can provide the contributions of the input parameters to the output
uncertainties in a computationally efficient way, which means the principal un-
certainty sources can be easily identified. This information can then serve as a
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starting point to improve the quality of the considered test configuration.
To summarise, the probabilistic approach should be used to estimate the re-
liability of the measured material parameters, while the non-probabilistic ap-
proach is the optimal approach to evaluate the quality of a particular test
configuration.

7.6.2. Validation of the Linear MNET Approximation

Consider the same test procedure as in the previous example. The signs of the
χ coefficients (7.8) indicate which parameter combination provides the worst-
case values. For example, the minimal value of E1 is obtained for maximum
thickness, second, third, and fifth resonant frequency, in combination with a
minimum length, width, mass, the first and fourth resonant frequency. The
lower bounds on the material parameters were computed with both the full
MNET routine and the linear approximation. Table 7.5 presents the results.

Table 7.5: Comparison of the lower worst-case values.

Approx. MNET Error
Ex 103.48 103.49 −0.010 %
Ey 98.58 98.59 −0.012 %
Gxy 37.63 37.63 −0.005 %
νxy 0.3560 0.3558 0.042 %

It is clear that the linearised MNET equations provide a very accurate estimate
of the material parameters. Note that the comparison is performed for a worst-
case value. The approximation is even more accurate for the Monte Carlo
samples, which are located inside the uncertainty intervals.
A final remark; figure 7.7 might give the impression that the bounds provided
by the non-probabilistic approach are an overestimation of the actual worst-case
values. The fact that there are no Monte Carlo samples in the vicinity of the
interval bounds is only due to the low probability of ending up in this region.
Table 7.5 proves that it is possible to reach the bounds of the uncertainty
intervals.

7.6.3. Optimal Sample Orientations for the MO Routine

The multi-orientation identification routine requires a number of beam-shaped
samples with a different material orientation. The number of sample orienta-
tions and the frequencies10 used for each test sample are design parameters of
the test configuration with an important influence on the quality of the ob-
tained results. For optimal results, the test configuration has to be optimised
with a pre-test analysis.
Traditionally, the quality of an inverse problem is checked by calculating the
condition number of the sensitivity matrix. Table 7.6 presents the sensitivity

10The fundamental flexural and/or fundamental torsional resonant frequency.
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matrix condition number of thirteen different sample/frequency combinations,
for a sample set that comprises the five brass beams of figure 6.9. The condition
number of the set that uses the fundamental flexural and torsional frequency
of all the beams equals 5.4, which clearly indicates that this data set provides
enough information to identify the material parameters. However, table 7.6
indicates that there are smaller sample sets that also provide the necessary
information.

Table 7.6: Sensitivity matrix condition numbers for a number of sample/fre-
quency sets.

0.0◦ 22.5◦ 45.0◦ 67.5◦ 90.0◦Set
ff ft ff ft ff ft ff ft ff ft

Cond. Num.

1 ? ? ? ? ? ? ? ? ? ? 5.4
2 ? – ? – ? – ? – ? – 3.0·105

3 – ? – ? – ? – ? – ? 2.9·104

4 ? ? – – ? ? – – ? ? 5.7
5 ? ? – – ? ? – – – – 5.0
6 – – – – ? ? – – ? ? 8.3
7 ? ? ? ? – – – – – – 18.9
8 – – ? ? ? ? – – – – 7.5
9 – – – – ? ? ? ? – – 11.7
10 – – – – – – ? ? ? ? 32.5
11 ? ? – – – – – – ? ? 5.0·104

12 – – ? ? ? ? ? ? – – 5.4
13 ? – – ? ? – – ? ? – 5.3

The sensitivity matrix condition number evaluates the relations between the
input and output parameters without taking the uncertainty of the input pa-
rameters into account. The condition number, therefore, quantifies only the
quality of the inverse problem, it does not evaluate the quality of the test
procedure. A genuine uncertainty analysis does not only consider the input
uncertainties, it also allows to compare two test configurations in a more phys-
ical way, i.e. comparing the uncertainties of the identified parameters.
The following input uncertainties are used to derive the output uncertainties:
length and width ±0.02mm, thickness ±1 µm, mass ±0.001 g and resonant fre-
quencies ±0.05%. The obtained results are shown in the plots of figure 7.9.
Note that all the sets that have a sensitivity matrix condition number larger
than 10 were rejected, so only sets 1, 4, 5, 6, 8, 12 and 13 were retained for fur-
ther investigation. Figure 7.9 indicates that the smallest overall uncertainties
are obtained for sets 1 and 4. Set 1 uses the flexural and torsional frequencies
of all five beams, set 4 just uses the frequencies of the 0◦, 45◦ and 90◦ beams.
Apparently, omitting the frequencies of the 22.5◦ and 67.5◦ beams does not
really affect the uncertainty of the material parameters. Although set 5 has a
lower sensitivity matrix condition number than sets 1 and 4, it does not yield
better results, especially the uncertainty of E2 is too high. However, in general,
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high condition numbers lead to larger uncertainty intervals, e.g. sets 6 and 8.
The identification set-up that uses only one frequency per sample, i.e. set 13,
yields excellent results for E1 and E2, but the uncertainty intervals of G12 and
ν12 are about two times as wide as the uncertainty intervals obtained with sets
1 and 4. Consequently, in a one-frequency-per-beam situation, it is preferable
to measure the shear modulus or Poisson’s ratio by measuring the fundamental
flexural and torsional frequencies of two separate beams in the 0◦, 45◦ and 90◦

direction, i.e. measuring the frequency information of set 4, than using the test
scheme of set 13.
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Figure 7.9: The output uncertainties of the sample sets of table 7.6 with a
sensitivity matrix condition number smaller than 10.

That a lower condition number does not automatically lead to a lower un-
certainty can be explained by the fact that the condition number is only a
measure of the quality of the information provided by the resonant frequencies.
The condition number does not relate to the way the unknown material para-
meters are extracted from this information. Therefore, a low condition number
does not necessarily result in small uncertainty intervals. However, a very high
condition number will result in large uncertainties, because no matter which
identification routine is used, it is impossible to extract information which is
not present in the test data. The sensitivity matrix condition number should
thus only be used as an indicator to make a first selection. The final selection
of the optimal test configuration should be based on the results of a genuine
uncertainty analysis.

7.7. Summary

This chapter dealt with uncertainty analysis in vibration-based MNETs and
introduced both a probabilistic and a non-probabilistic procedure to deter-
mine the uncertainties of the identified elastic properties from the uncertain-
ties of the input parameters. It was shown that the probabilistic approach is
optimal for the evaluation of the uncertainties during real experiments; the
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non-probabilistic approach is preferred for determining the optimal test config-
uration in the pre-test phase.
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8
Validation Tests

This chapter presents the validation tests performed on two different
reference materials in order to validate the MNET-based procedures
of chapter 6 in an experimental way.
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8.1. Introduction

This chapter presents two experimental test-cases of layered material identifica-
tion. The two considered test-cases are intended to validate the MNET-based
identification routines in an experimental way. The materials used in this
chapter do not have an industrial application, they were especially designed
and produced to serve as reference materials for the experimental validation of
the MNET routines.
Note that all the experiments were performed with the same equipment and
test set-up. The test samples were supported by, or suspended with thin wires
in order to reproduce the free-free boundary conditions of the FE-models as
well as possible. The test samples were excited with a loudspeaker and the
vibration response was captured with a doppler laser vibrometer. The test
procedures and set-up are discussed in detail in appendix B. Also note that
this chapter does not present all the experimental data and results. In general,
only the data that is needed to understand the discussions and conclusions is
provided. Appendix E presents a detailed description of all the test samples1,
sample models2, together with the obtained elastic properties.

8.2. Brass-Steel Bi-Metal

8.2.1. Introduction

Goal and Description of the Validation Test

The identification routines were successfully validated in a numerical way3.
However, a genuine validation of a test method should be performed in an ex-
perimental way. Since there are no standardised methods for layered material
identification, the main problem with an experimental validation is the choice
of the reference properties with which the identified properties have to be com-
pared. In such a validation test, this problem is overcome by using a layered
material of which the layer materials are also available in a homogeneous, i.e.
non-layered, form. In this way, the reference properties can be obtained with
non-layered identification routines from the resonant frequencies of the homo-
geneous test samples. The used reference material is a purpose-built brass-steel
bi-metal produced by gluing a stainless steel layer to a brass sample.

The Test Material

Seventy beam-shaped samples, 100×20 mm, and 14 plate-shaped samples, 105
×100 mm, were cut from a 0.8 mm thick brass sheet with a high pressure water
cutting device. The samples were cut in five different material directions. An
identical sample set was cut out of a 0.5 mm thick stainless steel sheet. Table
8.1 provides an overview of the produced samples. Note that the 0◦ direction
is the direction orthogonal to the rolling direction.

1The length, width, (layer)thickness, mass and resonant frequencies.
2The mesh size of the converged FE-model.
3A numerical validation is performed by generating the resonant frequencies of a set of

layered samples with FE-models, identifying the layer properties from these ‘experimental’
frequencies with the MNET routines, and comparing the identified properties with the ref-
erence properties, i.e. the properties used to generate the resonant frequencies.
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Table 8.1: The sample set that was cut out of the metal sheets.

QuantityType Dir. [◦]
Brass Steel

Beam 0.0 14 14
Beam 22.5 14 14
Beam 45.0 14 14
Beam 67.0 14 14
Beam 90.0 14 14
Plate 0.0 14 14

The layered specimens were produced by gluing a brass sample to a stainless
steel sample with the two-component epoxy glue Permabond E32. This glue is
especially designed for metals, and usually ensures a strong bonding between
the glued layers. The main disadvantage of the Permabond E32 glue is its high
viscosity, which requires the glueing of the test specimens in a press. Optimal
results were obtained by applying a uni-axial pressure of 4000 kPa. In this way,
glue layers with a thickness of about 10 µm were obtained. To ensure that the
samples did not stick to the press, the plates of the press were protected with
a teflon foil. The samples were removed from the press after twelve hours.
At least twenty four hours later, the sample edges were sanded to remove the
solidified excess glue, and to correct the inevitable miss-alignment of the two

Screw jack

Steel layer

Excess glue

Rigid steel plate

Teflon foil

Brass layer

Manometer

Hydraulic jack

Figure 8.1: The set-up to glue the sample layers.
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sample layers, as shown in figure 8.2. The homogeneous samples were produced
in the same way, but by combining two brass or steel layers. Figure 8.1 presents
the set-up that was used to produce the layered samples.

As-pressed sample Sanded sample

Excess glue

Figure 8.2: The effect of the sanding process.

8.2.2. Homogeneous Brass Samples

In total, twenty four homogeneous brass samples were produced: 4 beams in
the 0◦, 22.5◦, 45◦, 67.5◦, and 90◦ direction, and 4 plates in the 0◦ direction.
The dimensions, mass, and resonant frequencies of all the test samples were
measured with the procedures described in appendix B. The elastic properties of
the used brass were identified from the resonant frequencies of the beam-shaped
specimens with both the single- and multi-orientation routine, and from the
resonant frequencies of the plate-shaped specimens. The identified properties
are presented in tables 8.2 and 8.3 and displayed in the plots of figure 8.3.

Table 8.2: The averages of the single-orientation results.

Dir. [◦] E [GPa] G [GPa] ν [–]
0.0 106.88 37.07 0.442

22.5 105.37 37.95 0.388
45.0 102.26 38.77 0.319
67.5 101.44 38.27 0.326
90.0 101.61 37.51 0.350

Table 8.3: The results of the multi-orientation and plate-shaped routine.

E1 [GPa] E2 [GPa] G12 [GPa] ν12 [–]
Multi-orientation 107.38 101.75 37.41 0.358
Average plate-shaped 106.88 101.71 37.21 0.351

The brass appeared to be elastically anisotropic. The elastic modulus decreased
from the 0◦ to the 90◦ direction, and the difference between the stiffest and
most flexible direction was about 5 %. The shear modulus varied within a
range of 3 %, and was maximal in the 45◦ direction. The Poisson’s ratio varied
about 7 % as a function of the material orientation. The correlation between
the average properties obtained with the different MNETs was comparable
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Figure 8.3: The elastic properties of the homogeneous brass samples.
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with the spread of the results obtained on the different samples, except for the
ν12 values obtained with the single-orientation routine. The latter confirms
that the single-orientation routine does not provide a correct estimation of the
Poisson’s ratio, if the material is not isotropic4.

8.2.3. Homogeneous Stainless Steel Samples

Like in the case of brass, twenty four homogeneous stainless samples were pro-
duced: 4 beams in the 0◦, 22.5◦, 45◦, 67.5◦, and 90◦ direction, and 4 plates in
the 0◦ direction. The dimensions, mass, and resonant frequencies of all the test
samples were measured with the procedures described in appendix B. More-
over, the elastic properties were identified from the resonant frequencies of the
beam-shaped specimens with both the single- and multi-orientation routine,
and from the resonant frequencies of the plate-shaped specimens. The proper-
ties identified for the homogeneous steel specimens are presented in tables 8.4
and 8.5 and displayed in the plots of figure 8.4.

Table 8.4: The averages of the single-orientation results.

Dir. [◦] E [GPa] G [GPa] ν [–]
0.0 201.44 72.78 0.384

22.5 196.99 75.20 0.310
45.0 192.33 79.35 0.212
67.5 196.68 76.16 0.291
90.0 200.92 72.78 0.381

Table 8.5: The results of the multi-orientation and plate-shaped routine.

E1 [GPa] E2 [GPa] G12 [GPa] ν12 [–]
Multi-orientation 202.28 201.82 72.83 0.279
Average plate-shaped 201.06 200.76 72.16 0.280

The considered stainless steel was anisotropic. The elastic modulus was maxi-
mal in the 0◦ and 90◦ direction and minimal in the 45◦ direction. The overall
variation of the elastic modulus was about 5%. Both the shear modulus and
Poisson’s ratio were maximal in the 45◦ direction, and varied about 9 % and
13 % respectively in function of the orientation. Like in the case of brass,
the correlation between the average properties obtained with the three MNET
identification approaches was smaller or equal to the spread of the properties
obtained on the different test samples, while the single-orientation routine did
not provide a correct estimation of the Poisson’s ratio.

4This problem was extensively discussed with the introduction of the single-orientation
routine in chapter 6.
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Figure 8.4: The elastic properties of the homogeneous stainless steel samples.
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8.2.4. Brass-Steel Bi-Metal Samples

The layered sample set comprised thirty six test specimens: 6 beams in the 0◦,
22.5◦, 45◦, 67.5◦ and 90◦ direction, and 6 plates in the 0◦ direction. The layer
properties were identified from the resonant frequencies of these samples, using
two different identification approaches.

The First Identification Approach

With the first approach, the properties of one of the layers were considered to
be known. In this case, there was only one material with unknown properties;
the identification, therefore, required only a single layer configuration. The
brass properties were identified from the resonant frequencies of the layered
samples, while the steel properties were fixed to the reference values obtained
from the homogeneous samples. The steel properties were identified in a similar
way by fixing the properties of the brass layers to their reference values. Tables
8.6 and 8.7 present the results together with the relative difference with the
reference properties. Figures 8.5 and 8.6 provide a graphical representation of
these results.

Table 8.6: The averages of the single-orientation results.

Brass SteelDir. [◦]
E [GPa] G [GPa] E [GPa] G [GPa]

0.0 107.32 0.4 % 37.62 1.5 % 202.43 0.5 % 74.34 2.1 %
22.5 105.98 0.6 % 38.09 0.4 % 198.56 0.8 % 75.62 0.5 %
45.0 101.50 −0.7 % 38.65 −0.3 % 190.91 −0.7 % 79.01 −0.4 %
67.5 101.05 −0.4 % 38.20 −0.2 % 195.62 −0.5 % 75.98 −0.2 %
90.0 101.66 0.0 % 37.50 0.0 % 202.25 0.7 % 72.43 −0.5 %

Table 8.7: The results of the multi-orientation routine (MO) and the averages
of the plate-shaped (PS) routine.

E1 [GPa] E2 [GPa] G12 [GPa] ν12 [–]
MO Brass 107.68 0.3 % 101.59 −0.2 % 37.53 0.3 % 0.359 0.3 %
MO Steel 203.04 0.4 % 201.36 −0.2 % 73.14 0.4 % 0.280 0.4 %
PS Brass 106.95 0.1 % 101.61 −0.1 % 37.33 0.3 % 0.352 0.2 %
PS Steel 201.27 0.1 % 200.50 −0.1 % 72.48 0.4 % 0.282 0.4 %

All three routines proved to be capable of identifying the layer properties. The
spread of the results5 of the single-orientation routine is about three times
higher than the spread of the results obtained from the homogeneous samples.
For the plate-shaped routine, there is no clear increase in the spread of the
identified properties.

5Here quantified by the standard deviation.
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Figure 8.5: The elastic properties of the brass layer, approach 1.
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The shear moduli obtained from samples BSB-17, BSB-18, and BSB-29 were
rejected. Most likely, the glue layer of these samples was damaged during
the sanding process, leading to a reduction of the overall torsional stiffness
and an underestimation of the shear modulus. Note that the torsional modes
of these three samples had a much higher damping then the torsional modes
of the other samples. In case of sample BSB-29, the identification routine
had to keep the value of Poisson’s ratio equal to 0.5 in order to ensure the
feasibility of the elastic properties. Note that the underestimation of the elastic
modulus of sample BSB-29, figure 8.6(a), was related to the overestimation of
the Poisson’s ratio and not to the influence of the damaged glue layer on the
resonant frequency of the fundamental flexural mode. This was confirmed by
the results of the multi-orientation routine. During the last iteration step, the
frequency residual of the flexural frequency was 0.03% while the residual of the
torsional frequency was −4.2%; this clearly proved that there was no problem
with the resonant frequency of the flexural mode.

The Second Identification Approach

The second approach aimed at the identification of the layer properties without
using any homogeneous test samples. This approach required two different
layer configurations. The first configuration was the initial brass-steel bi-metal
sample, the second configuration was obtained by adding a glass layer to the
samples. Glass sheets with two different thicknesses were used for this purpose:
sheets with a thickness of 0.6mm and 0.7mm. Six specimens of every sample
type6 were produced. Of those six specimens, two specimens had a 0.7 mm
glass layer on the brass side, two specimens had a 0.7 mm glass layer on the
steel side, one specimen had a 0.6mm glass layer on the brass side, and one
specimen had a 0.6 mm glass layer on the steel side. Figure 8.7 presents all
these layer configurations.

Steel Steel Steel SteelSteel

Brass Brass Brass BrassBrass

Glass

Glass

Glass

Glass

Initial Modified

×6 ×2×2 ×1×1

0.7 mm 0.6 mm

Figure 8.7: The layer configurations of the initial and modified specimens.

Although the E32 glue was suited to glue glass to metal, it could not be used
to make the additional layer configurations, since the glass layers could not
withstand the pressure required to obtain a thin glue layer. Therefore, the
glass layers were glued with the Böhle U-682 UV-curing glue. This glue is
designed to fix glass on metal and has two major advantages for the considered
application. First of all, it has a low viscosity, which means that only a very

6A beam-shaped specimen in a particular orientation or a plate-shaped specimen.
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low pressure was required to push the excess glue away. The second advantage
is related to the UV-curing property of the glue. Because of this property,
there was enough time to carefully position the glass layer on the initial sample
and to press7 it so as to remove the excess glue. Once the glass layer was
correctly positioned, the glue could be fully cured in about 30 seconds by
radiating it with a UV-lamp. The UV-curing glue has proven to be a very
convenient solution to glue the glass layers. Note that the elastic properties of
the glass layers were identified before they were glued to the bi-metal samples.
The dimensions, mass, resonant frequencies, and elastic properties of the glass
samples are given in appendix E.
The layer properties were identified using the three MNET identification proce-
dures. With the single-orientation routine, the layer properties were estimated
from the resonant frequencies of the initial and modified layer configuration of
each sample. During the identification, the properties of the glass layers were
fixed to the properties presented in tables E.44 and E.45. Table 8.8 presents the
averages of the obtained properties together with the relative deviation from
the reference properties. Figure 8.8 and 8.9 present the individual results of
the single-orientation routine. A number of shear modulus values were rejected
because they differed too much from the rest of the values. Note that there
were also two rejected elastic moduli, i.e. Ebrass of sample BSB-06 and Esteel

of sample BSB-29. The properties of these two layers were rejected because the
identification had to block the Poisson’s ratio value to 0.5 to ensure the feasi-
bility of the properties of the considered layer. To conclude, it is interesting
to point out that the average difference between the identified and reference
properties is estimated at 0.5 % for the brass properties, and at 0.65 % for the
steel properties.

Table 8.8: The averages of the single-orientation results.

Brass SteelDir. [◦]
E [GPa] G [GPa] E [GPa] G [GPa]

0.0 107.48 0.6 % 37.05 −0.1 % 202.67 0.6 % 72.29 −0.7 %
22.5 105.60 0.2 % 38.16 0.5 % 197.68 0.3 % 76.69 2.0 %
45.0 102.16 −0.1 % 38.27 −1.3 % 190.70 −0.8 % 80.11 1.0 %
67.5 100.79 −0.6 % 38.24 −0.1 % 197.43 0.4 % 76.12 −0.1 %
90.0 102.33 0.7 % 37.11 −1.1 % 201.69 0.4 % 73.00 0.3 %

The layer properties were also identified with the multi-orientation routine. In
a first phase, the elastic properties were identified from the fundamental flex-
ural and torsional frequencies of the two layer configurations of all the samples.
All the frequencies had a weighting coefficient of 1, and the properties of the
glass layers were fixed to the values of tables E.44 and E.45. The sixty test

7To keep the glass layers intact, the samples were not placed in a press. Pressing the
samples with a press requires a complicated set-up in order to keep the glass layer in place
so that it is no crushed at the edges. Instead of using a press, the excess glue was removed
by putting a piece of cloth over the samples and pressing them by hand as hard as possible.
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Figure 8.8: The elastic properties of the brass layer, approach 2.
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Figure 8.10: The frequency residuals of the multi-orientation routine.

sample models were simultaneously updated in a single identification routine.
The solution converged after four iteration steps, and figure 8.10 presents the
frequency residuals of the last iteration step. Apparently, there were ten tor-
sional frequencies that could not be reproduced within an error range of 1 %,
which is about twice the average residual error. The majority of the associ-
ated samples showed an increase of the damping ratio of the torsional mode
in comparison to the samples that gave residuals smaller than 1%. Therefore,
these ten frequencies were rejected, based on the assumption that the large
residuals were related to defects of the test samples, e.g. an imperfection in
one of the glue layers. Note that these ten frequencies are only associated with
seven samples. For samples BSB-17, BSB-18 and BSB-29, there was a prob-
lem with the torsional frequencies of the initial bi-metal, it is thus logical that
the torsional frequencies of the modified samples have to be rejected as well.
The frequency weights were adapted is such a way that each mode of each
sample configuration had the same importance; the corresponding weighting
coefficients are presented in table E.38. This modified identification problem
provided the properties of table 8.9. Figures 8.9 and 8.8 reveal that the cor-
relation between the identified and reference properties is much smaller than
the spread on the properties identified on different samples. Table 8.9 also
indicates that the difference between the identified and reference values was
smaller than 0.5% for E and G, and smaller than 3.5 % for ν. Note that the
deviation between the identified and reference properties was higher for the
steel than for the brass material. This was related to the relative thickness of
the two layers; the thinner steel layer was more sensitive to disturbances than
the thicker brass layer.
Finally, the layer properties were derived from the resonant frequencies of two
different layer configurations of the plate-shaped specimens. During the iden-
tification, the glass properties were kept fixed to the values of table E.46. The
averages of the obtained results are presented in table 8.10. In addition, figures
8.9 and 8.8 present the results of the individual samples.
Although the average results deviated less then 3.5 % from the reference val-
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Table 8.9: The results of the multi-orientation routine.

E1 [GPa] E2 [GPa] G12 [GPa] ν12 [–]
Brass 107.52 0.13 % 101.62 −0.13 % 37.36 −0.15 % 0.366 2.27 %
Steel 203.22 0.47 % 202.78 0.47 % 73.18 0.49 % 0.270 −3.31 %

Table 8.10: The average results of the plate-shaped routine.

E1 [GPa] E2 [GPa] G12 [GPa] ν12 [–]
Brass 105.28 −1.5 % 100.69 −1.0 % 37.17 −0.1 % 0.355 1.0 %
Steel 207.81 3.4 % 205.13 2.2 % 73.09 1.3 % 0.277 −1.2 %

ues, the spread of the results of the plate-shaped specimens was suspiciously
high. In terms of standard deviation, the spread was on average eight times
higher than the spread of the results of the single-orientation routine. Also note
that on the plots of figures 8.8(a), 8.8(b), 8.9(a), and 8.9(b), three curves that
were clearly above the average and three curves were clearly below the average.
The properties of the layer glued to the glass were systematically underesti-
mated, while the properties of the other layer were always overestimated. This
indicated that there was a serious problem with the modified plates.
The problems were most likely related to the fact that the glue layer had a
non-uniform thickness. To avoid the inclusion of air bubbles in the glue layer,
the glue was poured in the centre of the sample. The glass layer was put on top
of the glue, and was pressed to push the glue to the edges of the plate. Figure
8.11 schematically represents this process.PSfrag replacemen

Glue Glass

Step 1 Step 2 Step 3

Figure 8.11: Gluing the glass layer to the plate-shaped samples.

Because there was no appropriate set-up available, the glass sheet could not
be pressed very out of fear of cracking it. Because of that, the glue layer was
thicker in the centre than along the edges, as shown in figure 8.12. With a
standard micrometer screw, the thickness could only be measured along the
edges. As a consequence, the thickness of the plate was underestimated. In the
identification routine, the underestimation of the sample thickness was com-
pensated by an overestimation of the elastic properties. This can be explained
as follows. Initially, an underestimation of the thickness resulted in an underes-
timation of the stiffness of the sample. The easiest way to increase the stiffness
of the sample was to increase the stiffness of the outer layers. For the sample in
figure 8.12, this resulted in an overestimation of the brass properties, since the
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properties of the glass layer were kept constant. The identification routine also
included a pure bi-metal sample. In order to match the experimental frequen-
cies of this sample, the elastic properties of the other layer, i.e. the steel layer
for the sample in figure 8.12, had to be underestimated, which was exactly the
effect observed in the results of the plate-shaped routine.

Thickness measurement

Figure 8.12: The non-uniform glue layer of the modified plates.

Conclusions

This validation test provided an irrefutable proof of the experimental feasibility
of the vibration-based MNET routines for the identification of the elastic prop-
erties of the constituent layers of layered materials. The following conclusions
can be drawn from this validation test:

- It is possible to identify the layer properties with a sample set that com-
prises one homogeneous and one layered test sample. For the considered
validation test, the three identification approaches succeeded in finding
the layer properties with an average deviation, with respect to the refer-
ence properties of 0.6 % in case of the SO routine, 0.3 % in case of the MO
routine, and 0.2 % in case of the PS routine.

- It is possible to identify the layer properties from a sample set that com-
prises one initial and one modified test sample. For the considered val-
idation test, the three identification approaches succeeded in finding the
layer properties with an average deviation, with respect to the reference
properties of 0.7 % in case of the SO routine, 0.9 % in case of the MO rou-
tine, and 1.4% in case of the PS routine. However, in the case of the MO
routine, the average deviation of the elastic and shear moduli was 0.3%,
while the average deviation of the Poisson’s ratios was 2.8 %. The aver-
age deviation of the elastic and shear moduli identified by the PS routine
was 1.6 %, while the average deviation of the Poisson’s ratios was 1.1%.
Furthermore, since the SO routine does not provide an estimation of the
Poisson’s ratios, it makes sense to compare the quality of the results of the
three MNET routines by comparing the average deviation of the elastic
and shear moduli, i.e. 0.7 % for the SO routine, 0.3 % for the MO routine,
and 1.6 % for the PS routine.

- Modifying the samples by adding a glass layer appears to be a successful
concept, in case of beam-shaped specimens. In the case of plate-shaped
samples, the gluing process requires special care in order to ensure the
uniformity of the glue layer. A press, with a clamping system to keep the
glass layer in position, is a necessity. Note that the use of UV-curing glue
results in an acceptable sample preparation time.
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- A number of samples seemed to have a glue layer of inferior quality. Ap-
parently, it is impossible to avoid this, since the additional layers were
glued very carefully and still the problem persisted. Therefore, it is ad-
visable to make a few samples more than those strictly needed. Note
that a poor bonding of the sample to the glass layer mainly decreases the
torsional frequency.

- With the single-orientation routine, a problem with the torsional frequency
can lead to an incorrect Young’s modulus. Note that this problem is always
related to an unrealistically high value of the identified Poisson’s ratio.

- The multi-orientation routine uses a largely overdetermined system. In-
correct frequencies, e.g. due to a mistake or a poor quality glue layer, can
be detected by inspecting the frequency residuals. If a particular sample
has an incorrect value for one of the experimental resonant frequencies,
only that frequency needs to be removed from the data set. The correctly
measured frequencies of this sample can still be used since they provide
additional information to the routine.

- Layered material identification results in a higher spread of the values
identified on different samples than homogeneous material identification.
Therefore, it is advisable to use a larger set of test specimens for layered
than for homogeneous materials.

- For this test case, the multi-orientation routine appeared to be the most
flexible and reliable identification procedure.

8.3. Carbon-Epoxy Composite

8.3.1. Introduction

This test case presents a second, less elaborate, validation test. This time,
the test material was a carbon-epoxy composite with a [03 903]s stacking se-
quence. The carbon-epoxy material was produced by manually stacking the
twelve unidirectionally reinforced prepreg layers8. During the lay-up process,
special care was taken to ensure the correct ply orientation. After the lay-up
process, the material was cured in an autoclave using the prescribed tempera-
ture and pressure cycle. To allow the evacuation of superfluous resin during the
curing process, the material surface was covered with a peel ply. As a result,
the bottom and top surfaces of the composite were not smooth but had the
imprint of the peel ply texture. Figure 8.13 schematically represents the lay-up
and the surface condition of the composite material. Figure 8.14 shows a light
microscope picture of the imprint of the peel ply on the material surface.

Skin (0◦)

Skin (0◦)

Core (90◦) Profile depth

Figure 8.13: The stacking sequence and surface condition.

8The used prepreg material was Hexcel Fibredux 920 CX-TS-6K-5-42%.
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1 mm

Figure 8.14: The light microscope image of the peel ply imprint on the ma-
terial surface.

The skin and core were made with the same prepreg material; the layers were
just rotated over an angle of 90◦. The constitutive behaviour of this composite
material could thus be described with four elastic material parameters, which
implied that the properties of the prepreg layers could be identified from the
resonant frequencies of a single plate-shaped specimen. Since this test was
equivalent to a non-layered identification, the obtained properties were used as
reference values.
It would also be possible to disregard the relation between the properties of
the three layers, and to consider the composite as a sandwich material, where
the skin and core materials have independent properties. In this situation,
the identification of the skin and core properties would require the resonant
frequencies of two plate-shaped specimens with a different layer configuration.
A successful validation should result in skin properties that equal the reference
properties, while the core properties should have a phase lag of 90◦ with respect
to the reference properties.

8.3.2. Equivalent Thickness of the Material

The MNET routine needs an accurate finite element model of the test speci-
mens. Because of this, the peel ply imprint on the top and bottom surfaces of
the composite required special attention. Incorporating the imprint profile in
the finite element model required such a fine mesh that it led to an unmanage-
able number of elements. For an acceptable computation time, the elements
of the FE-model had to be an order of magnitude larger than the wavelength
of the surface profile. Because of this, the influence of the peel ply imprint
could only be modelled in an indirect way. The most convenient way to do this
was to replace the real, i.e. rough, plate by an equivalent smooth plate with a
uniform thickness. The only problem with this approach was the estimation of
the thickness of the equivalent plate.
The first step in the estimation of the equivalent thickness (teq) was the de-
termination of the depth of the surface profile; the profile depth was defined
as indicated in figure 8.13. The profile depth was measured with a surface
analyser9, and the resulting cumulative distribution function is presented in
figure 8.15.

9A Taylor-Hobson form Talysurf 120L.
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Figure 8.15: The cumulative distribution function of the profile depth.

The total thickness of the material (tmi) was measured with a micrometer
screw. This thickness value represented the distance between the outermost
points of the top and bottom surface profiles as illustrated in figure 8.16.

tmi

tpr

tpr

teq

Figure 8.16: The definition of the thicknesses tmi, teq, and tpr.

The equivalent thickness was determined by comparing the frequencies of two
finite element models. Both models had 50×50 plate elements with linear shape
functions (Quad4). The first finite element model represented a plate with a
peel ply imprint and is, therefore, referred to as the ‘profile model’. In the
profile model, the element thicknesses varied from element to element, and
were obtained as follows. First, a set of 2500 random numbers was generated.
This set had the same cumulative distribution function as the measured profile
depth distribution of figure 8.15. Next, the random numbers were doubled and
subtracted from the thickness tmi. The resulting values were used as element
thicknesses of the profile model. Once completed, the profile model was used
to compute the resonant frequencies of the first five vibration modes of a plate
with a peel ply imprint. In the second finite element model, which is called
the ‘equivalent model’, all the elements had the same thickness. The equivalent
thickness was estimated by updating the thickness of the equivalent model with
the goal of reproducing the first five resonant frequencies of the profile model
as good as possible. Eventually, the average surface profile depth (tpr) was
estimated as 1

2 (tmi − teq) and equalled 37.1 µm. Note that this corresponds
with the profile depth that has cumulative distribution of 64 %. Figure 8.17
shows the profile model, while table 8.11 presents the frequency match of the
profile model and the updated equivalent model.
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Figure 8.17: The element thicknesses of the profile model.

Table 8.11: The frequency match between the profile and updated equivalent
model.

Profile Model Equivalent Model
Freq. [Hz] Freq. [Hz] Diff. [%]

Mode 1 201.74 201.71 −0.02
Mode 2 595.48 595.59 0.02
Mode 3 623.59 623.61 0.00
Mode 4 727.29 727.45 0.02
Mode 5 737.80 737.59 −0.03

8.3.3. The Test Specimens

The identification of the skin and core properties required two different layer
configurations. The first layer configuration was the pure composite material,
the second configuration was obtained by adding a 2 mm thick glass layer to
the composite. Figure 8.18 presents these two layer configurations.PSfrag

RealityReality ModelModel

Configuration-1 Configuration-2

Skin

Skin
Core

Glue

Glass

Figure 8.18: The two layer configurations.

For an optimal Poisson’s ratio sensitivity, the dimensions of a plate-shaped
specimen had to comply with equation (6.5).

l

w
= 4

√
E1

E2

For the carbon-epoxy material, E1 and E2 represent the average flexural stiff-
ness of the material, i.e. the stiffness of an equivalent homogeneous material.
Since the values of E1 and E2 were unknown, they had to be estimated before
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the test plates could be made. Normally, E1 and E2 are measured on two beam-
shaped samples oriented along the two principal material directions. However,
in order to save material and time, E1 and E2 were estimated from the stacking
sequence of the two layer configurations in combination with an initial estimate
of the elastic moduli of the prepreg layers and glass. The average thickness of
the composite material (tmi) was estimated at 1.85 mm, which resulted in an
equivalent thickness (teq) of 1.776mm. Since the skin was made with three
prepreg layers and the core with six, the skin and the core were assumed to
have a thickness of 0.25 teq and 0.50 teq, respectively. The glue layer was as-
sumed to have a thickness of about 10 µm. However, the thickness of the glue
layer in the model was the sum of the thickness of the actual glue layer and the
surface profile, as shown in figure 8.18. The equivalent thickness of the glue
layer was thus estimated at 50 µm. The prepreg material was assumed to have
a stiffness in the fibre direction (El) of 100 GPa and a transverse stiffness (Et)
of 5GPa. Table 8.12 presents the estimated layer thicknesses and stiffnesses.

Table 8.12: A tentative estimation of the layer thicknesses and stiffnesses.

teq [mm] E1 [GPa] E2[GPa]
Skin 0.444 100.0 5.0
Core 0.888 5.0 100.0
Glass 2.000 70.0 70.0
Glue 0.050 3.0 3.0

The First Layer Configuration

The first layer configuration was the pure composite material. The equivalent
overall stiffness in flexure (Eeq) could be estimated from the plate stiffness
stiffness as

Deq = Dcore +Dskin (8.1)

By using the estimated thicknesses and stiffnesses of table 8.12, this provides

E1 =
Eth

3
1 + El(h3

2 − h3
1)

h3
2

= 88.1 GPa (8.2)

E2 =
Et(h3

2 − h3
1) + Elh

3
1

h3
2

= 16.9 GPa (8.3)
PSfrag

h2h2
h1h1 El

El Et

Et

1-direction 2-direction

Figure 8.19: A cross-section of the composite material.
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The estimated overall stiffnesses of the carbon-epoxy provided an optimal as-
pect ratio of 1.51. Based on that, a test plate10 of 158×104 mm was cut out
of the composite material. The resonant frequencies of the first five vibration
modes were measured and the homogenised properties were identified, as shown
in table 8.13.

Table 8.13: The homogenised elastic properties of sample PCE-01.

E1 [GPa] E2 [GPa] G12 [GPa] ν12 [–]
82.85 18.31 3.53 0.129

The measured properties indicated that the considered material required an
optimal aspect ratio of 1.46, therefore the length of the test plate was reduced
from 158mm to 151 mm.

The Second Layer Configuration

The second layer configuration was a combination of the initial composite ma-
terial with a 2mm thick glass layer. The overall stiffnesses of the second layer
configuration was obtained from

Deq = Dcore +Dskin +Dglue +Dglass (8.4)

The estimated properties of table 8.12 resulted in an E1 of 64.8 GPa and an
E2 of 57.7GPa, which provided an optimal aspect ratio of 1.03. A test plate11

with this aspect ratio was produced by gluing a glass layer to a carbon-epoxy
plate with the Permabond E32 epoxy glue. During the curing of the glue, the
material was placed in a press that applied a uni-axial pressure of 1500 kPa.
Once the glue was cured, the sample was removed from the press and the sample
edges were sanded. Table 8.14 presents the homogenised elastic properties
measured for this test sample. The experimental values confirmed that 1.03
was indeed the optimal aspect ratio.

Table 8.14: The homogenised elastic properties of sample PCE-03a.

E1 [GPa] E2 [GPa] G12 [GPa] ν12 [–]
67.22 60.25 9.82 0.136

8.3.4. Identification of the Layer Properties

The Reference Properties

Both skin and core were made with the same type of prepreg layers, but the
core layers were rotated over an angle of 90◦ with respect to the skin layers.

10Sample PCE-01; the experimental data for this sample are presented in appendix E.
11Sample PCE-03a; the experimental data for this sample are presented in appendix E.
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When this relation between the skin and core properties was taken into account,
the constitutive behaviour of the composite material could be described with
four elastic parameters, i.e. the four elastic properties of the prepreg layers.
This implies that the properties can be identified from the first five resonant
frequencies of a single plate-shaped specimen. The material properties obtained
in this way were used as reference values.

Table 8.15: The prepreg properties identified on sample PCE-02.

E1 [GPa] E2 [GPa] G12 [GPa] ν12 [–]
103.76 9.30 3.99 0.260

Table 8.16: Match between experimental and numerical frequencies.

Mode fexp [Hz] fnum [Hz] Diff. [%]
1 196.63 196.73 −0.052
2 614.06 614.43 −0.060
3 638.36 638.83 −0.073
4 738.72 738.05 0.090
5 743.81 743.11 0.094

The prepreg properties were identified from the resonant frequencies of sample
PCE-02. The four elastic constants of the prepreg material were identified using
the identification scheme of figure 6.16 in combination with a finite element
model, where the core properties equalled the skin properties rotated over an
angle of 90◦. Table 8.15 presents the identified properties, while table 8.16
provides the associated frequency residuals.

The Layer Properties

The properties of the skin and core material could also be identified in case
the relation between the layer properties was ignored. In that case, the prop-
erties of two independent layer materials had to be measured, which required
two different layer configurations. The first layer configuration was represented
by the pure carbon-epoxy specimen PCE-02, the second layered configura-
tion was represented by specimen PCE-03a, which was the combination of the
carbon-epoxy specimen PCE-03 and the glass specimen Gla-2.0-0112. The layer
properties were identified from the first five resonant frequencies of these two
samples using the identification routine of section 6.3.2. Table 8.17 presents the
obtained properties, and table 8.18 provides the associated frequency residuals.

Table 8.17: The measured skin and core properties.

E1 [GPa] E2 [GPa] G12 [GPa] ν12 [–]
Skin 103.68 9.36 3.99 0.259
Core 9.92 103.38 3.97 0.024

12Appendix E provides a detailed description of these test specimens.
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Table 8.18: Match between experimental and numerical frequencies.

Carbon-Epoxy (PCE-002) Carbon-Epoxy + Glass (PCE-03a)
Mode fexp [Hz] fnum [Hz] Diff. [%] fexp [Hz] fnum [Hz] Diff. [%]

1 196.63 196.73 −0.052 388.83 388.91 −0.020
2 614.06 614.45 −0.063 917.89 917.03 −0.015
3 638.36 638.95 −0.092 1010.04 1008.23 −0.019
4 738.72 738.09 0.085 1224.54 1226.28 0.021
5 743.81 743.19 0.084 1251.06 1253.79 0.022

Discussion of the Obtained Properties

Table 8.19 compares the properties of the skin and the core with the reference
properties. Note that the core properties in table 8.19 were rotated over an
angle of 90◦. The error between the layer and reference properties was smaller
than 0.7 %, except for E2 and ν12 of the core for which the error was smaller
than 7 %. The overall error on the skin properties was lower than the error on
the core properties, which may be explained by the higher sensitivity of the
skin layers. The plots of figure 8.20 compare the match of the skin and core
properties with the reference properties for the orientations ranging between
0◦ and 90◦. These plots might give the impression that the correlation of the
E-moduli is better that the correlation of the shear moduli and Poisson’s ratios.
However, this not the case. The correlation of the E-moduli only looks better
because of the scale that is necessary to present the large variation of the
E-modulus in function of the orientation.

Table 8.19: Comparison of the skin, core, and reference properties.

E1 [GPa] E2 [GPa] G12 [GPa] ν12 [–]
Reference 103.76 9.30 3.99 0.260

Value 103.68 9.36 3.99 0.259Skin
Error −0.1 % 0.7 % 0.0 % −0.6 %
Value 103.38 9.92 3.97 0.245Core (	 90◦)
Error −0.4 % 6.7 % −0.3 % −5.7 %

8.3.5. Conclusions

The tests performed on the layered carbon-epoxy material provided a second
successful experimental validation of the layered identification routine. The
most important conclusion that could be drawn from this test case is that
the use of plate shaped-specimens to identify the layer properties of strongly
anisotropic materials is not straightforward, since every layer configuration re-
quires a specimen with a different aspect ratio. For this a test, the problem
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Figure 8.20: The comparison of the skin and core properties with the refer-
ence properties.
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could be solved quite elegantly by deriving the optimal aspect ratios from an
initial estimate of the elastic moduli of the layers. However, in case this infor-
mation is not available a priori, the optimal aspect ratio has to be determined
in an experimental way, i.e. by machining a beam-shaped specimen in both the
1- and the 2-direction, identifying the homogenised flexural stiffnesses from the
resonant frequencies of these samples, and deriving the optimal aspect ratio
from the identified stiffnesses. This process has to be repeated for every layer
configuration.

8.4. Summary

This chapter presented the results of two experimental validation tests of the
vibration-based MNETs for the identification of the elastic properties of the
individual layers of layered materials. The first validation test was performed
on a brass-steel bi-metal, the second test was performed on a purpose-built
carbon-epoxy composite plate. The validation test showed that three MNET
routines proposed in chapter 6 are able to identify the layer properties.
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9
Applications

This chapter presents a number of applications of layered mate-
rial identification, using the MNET-based procedures introduced
in chapter 6, to identify the elastic properties of different types of
ceramic coatings.
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9.1. Introduction

This chapter presents two applications of layered material identification to de-
termine the elastic properties of thermal barrier coatings. The air plasma
sprayed coatings were provided by the University of Sheffield, the electron
beam physical deposited coatings were produced by das Deutsches Zentrum
für Luft- und Raumfahrt. Both coatings were produced in the framework of
the European SICMAC project.
Note that all the experiments were performed with the same equipment and
test set-up as in chapter 8. Remember that this test set-up is discussed in
detail in appendix B. Also note that this chapter does not present all the
experimental data and results. In general, only the data that is needed to
understand the discussions and conclusions is provided. Appendix E presents
a detailed description of all the test samples1, sample models2, together with
the obtained elastic properties.

9.2. Air Plasma Sprayed Coatings

9.2.1. Introduction

In the automotive and aerospace industries, ceramic coatings are commonly
used to shield metallic components from high temperatures and corrosive en-
vironments. Widely known as thermal barrier coatings (TBCs), they usually
consist of two separate layers: a bond coat (BC) and a top coat (TC). The
ceramic top coats are designed to shield the substrate from high temperatures,
while the metallic bond coat protects the substrate from oxidation. Moreover,
the bond coat bridges the thermal expansion coefficient mismatch that exists
between the substrate and the TC, minimising the risk of delamination of the
TC during cooling from the processing temperature.
There is a number of different ways to apply the coating on the substrate. Air
plasma spraying (APS) is a thermal spraying process that consists of injecting
ceramic powder particles into a direct current plasma jet. The high temperature
jet melts the particles, without decomposing or vaporising them, and projects
them towards the substrate. The liquid droplets strike the substrate’s surface
at high velocity, flatten to a disc and solidify. The coating process consists
of various passes of the spraying torch over the substrate’s surface, forming a
coating layer with the required thickness.
The microstructure of an APS coating consists of a complex network of pores
and cracks. The typical shape of the solidified droplets is that of a thin lamellae
with a ‘pancake’ like form, known as splats. Certain cracks run along the splat
interfaces, i.e. intersplat cracks, other cracks run across the splats, i.e. intrasplat
cracks. This microstructure has a severe impact on the mechanical properties
of the coating; the elastic modulus of an APS coating can be up to 20 times
lower than the elastic modulus of the corresponding bulk material [108].
This test case considers a NiCoCrAlY bond coat and an yttria-stabilised zir-
conia (8YSZ) top coat. Figures 9.1 and 9.2 display the main microstructural

1The length, width, (layer)thickness, mass and resonant frequencies.
2The mesh size of the converged FE-model.
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25 µm

(a) Bond coat

25 µm

(b) Top coat

Figure 9.1: Backscattered electron (BSE) images of the microstructure of
APS-deposited (a) NiCoCrAlY bond coat, and (b) 8YSZ top coat.
In both images, some of the splats are indicated by arrows. (SEM

pictures used with kind permission of K. Lambrinou.)

5 µm5 µm

50 µm

Intersplat crackIntrasplat crack

Void

Figure 9.2: BSE images of the microstructure of an APS 8YSZ top coat. (SEM

pictures used with kind permission of K. Lambrinou.)



196 9.2. AIR PLASMA SPRAYED COATINGS

features3 of APS TBCs, i.e. pancake-like splats, inter- and intrasplat cracks,
and voids. These figures clearly indicate that the APS ceramic top coat has a
higher crack density than the APS metallic bond coat.

9.2.2. The Initial Samples

The test samples were plate-shaped specimens with a nominal dimension of
150×145 mm. The first specimen, ACS-01, was a pure steel substrate with a
nominal thickness of 2mm. Specimens ACB-01 and ACB-11 were steel plates
coated with a layer of 250 µm and 500 µm of BC, respectively. The last two
specimens, ACT-01 and ACT-11, were steel plates coated with a layer of 250µm
and 500µm of TC, respectively. Tables E.56 and E.57 of appendix E provide
a detailed description of these test samples.
The five test plates were far from optimal. First of all, the steel substrates were
cut with a guillotine. As a result, the pure steel specimen has a dent along one
of its sides. The coated specimens were also not flat. The difference between the
thermal expansion coefficients of the substrate and coating materials resulted in
a curvature of the specimens. These two sample deformations are schematically
represented in figure 9.3.

Uncoated specimen Coated specimens

a

a

a

a

a’

a’

a’

a’

b
b

b
b

b’

b’

b’

b’

Figure 9.3: The deformation of the plate-shaped samples.

The Substrate Properties

The properties of the steel substrate were identified from the first five resonant
frequencies of the pure steel sample ACS-01. Table 9.1 presents the obtained
elastic parameters.

Table 9.1: The elastic properties of the substrate.

E1 [GPa] E2 [GPa] G12 [GPa] ν12 [–]
ACS-01 203.75 208.66 77.86 0.229

3The microstructural characterisation of the APS coatings presented in this thesis was
performed by Dr. K. Lambrinou of the department of metallurgy and material engineering
of the Katholieke Universiteit Leuven.
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The Bond Coat Properties

The bond coat properties were identified in two different ways. First, the
properties were identified from the first five resonant frequencies of a sample set
consisting of one pure substrate sample and one coated sample: ACS-01/ACB-
01 and ACS-01/ACB-11. Next, the properties were identified from the resonant
frequencies of two coated samples: ACB-01/ACB-11. The obtained elastic
properties of both substrate and BC are presented in tables 9.2 and 9.3.

Table 9.2: The elastic properties of the steel substrate.

E1 [GPa] E2 [GPa] G12 [GPa] ν12 [–]
ACS-01/ACB-01 203.79 208.68 77.85 0.229
ACS-01/ACB-11 203.75 208.66 77.85 0.229
ACB-01/ACB-11 193.31 204.00 71.55 0.353

Table 9.3: The elastic properties of the NiCoCrAlY BC.

E1 [GPa] E2 [GPa] G12 [GPa] ν12 [–]
ACS-01/ACB-01 Err. Err. Err. Err.
ACS-01/ACB-11 30.92 25.27 11.81 0.121
ACB-01/ACB-11 28.38 17.26 16.29 0.043

For the sample combination ACS-01/ACB-01, there is no convergence of the
bond coat properties. For the results of table 9.3, it can derived that the offset
between the individual and the mean BC properties ranged between 4 % and
58 %, with an average of 24 %.

The Top Coat Properties

Like the bond coat properties, the TC properties were identified in two different
ways: using uncoated/coated and coated/coated sample combinations. Tables
9.4 and 9.5 present the identified parameters. All three sample combinations
provided an estimate of the TC properties. The difference between the indi-
vidual and mean TC properties varied between 5 % and 67 %, with an average
of 19%.

Table 9.4: The elastic properties of the steel substrate.

E1 [GPa] E2 [GPa] G12 [GPa] ν12 [–]
ACS-01/ACT-01 203.75 208.66 77.85 0.229
ACS-01/ACT-11 203.75 208.66 77.85 0.229
ACB-01/ACT-11 206.19 209.95 76.56 0.271
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Table 9.5: The elastic properties of the 8YSZ TC.

E1 [GPa] E2 [GPa] G12 [GPa] ν12 [–]
ACS-01/ACT-01 20.77 19.05 8.30 0.757
ACS-01/ACT-11 26.05 24.69 10.49 0.391
ACB-01/ACT-11 25.07 24.17 11.27 0.187

Discussion

The results were not very satisfactory. First of all, it appeared to be impossible
to identify the coating properties of sample ACB-01. There was also a large
variation in the properties obtained with different sample combinations, and
this for both BC and TC. In addition, the agreement between the substrate
properties identified from the pure substrate, and those identified from the
coated/coated sample combinations was far from perfect.
There are clearly a number of severe problems with the identification of the
coating properties, problems that are most likely related to the curvature of
the test specimens. Appendix C shows that a double curvature, i.e. curvature
in two orthogonal directions, of a plate-shaped sample has a severe influence on
the resonant frequency of the third vibration mode. Since the frequency of the
third mode is important for the estimation of Poisson’s ratio, the identification
of ν12 of curved samples is expected to be problematic. This expectation was
confirmed by the identification of the Poisson’s ratio of the 8YSZ TC, shown
in Table 9.5.

9.2.3. The Beam-Shaped Specimens

The identification of the coating properties from the initial samples did not pro-
vide satisfactory results. The encountered problems were most likely caused
by the curvature of the test plates. As illustrated in appendix C, the resonant
frequencies of beam-shaped samples were much less sensitive to the sample de-
formation. Therefore, it was decided to cut a number of beam-shaped samples
from the initial test plates and check whether these samples provided more
consistent coating properties. A pre-test analysis showed that the curvature
did not have a significant influence on the resonant frequencies of beam-shaped
samples that measure 40×12 mm. Subsequently, these sample dimensions were
used in a non-probabilistic uncertainty analysis. The results of this analysis
indicate that a sample set comprising beams in the 0◦, 45◦, and 90◦ directions
provided an accurate estimate of the coating properties and that an extension
of this sample set with beams in the 22.5◦ and 67.5◦ directions did not improve
the reliability of the identified coating properties.
Therefore, it was decided to cut nine 40×12 mm beam-shaped samples from
every test plate, i.e. 3 sets of 3 samples in the 0◦, 45◦, and 90◦ direction. A
preliminary cutting test was performed to find the optimal technique to cut the
coated plates. Figure 9.4 presents the results of the preliminary cutting test
of a TC-coated specimen, i.e. ACT-11. The test revealed that the TC spalls
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20 mm

Spalled coating

(a) High pressure water jet

20 mm

(b) Laser

Figure 9.4: The results of a preliminary cutting test on a specimen coated
with TC.

50 mm

50 mm

Figure 9.5: The sample set cut out of the initial test plate ACB-01.
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off with high pressure water jet cutting. However, it is possible to cut the
specimens without damaging the coating, using a laser. Figure 9.5 shows the
sample set that was cut out of specimen ACB-01 with a laser cutting device.
A similar sample set was cut out of the other four test plates.

The Substrate Properties

The substrate properties were identified from the fundamental flexural and tor-
sional frequencies of the test beams with both the single- and multi-orientation
routine. The plots of figure 9.6 present the identified elastic parameters, while
tables 9.6 and 9.7 give the results in a numerical form. Note that appendix E
provides a detailed description of all the specimens and the obtained results.
The substrate appeared to be elastically anisotropic. The elastic modulus var-
ied about 4.5 % in function of the material orientation, and was maximal for
the direction perpendicular to the rolling direction. The difference between the
minimal and maximal shear modulus was about 5%. The single-orientation
Poisson’s ratios are not presented here, since they are incorrect in case of an
anisotropic material; however, appendix E provides the numerical values of all
the identified elastic parameters.

Table 9.6: The results of the single-orientation routine.

Dir. [◦] E [GPa] G [GPa]
0.0 200.66 77.09

45.0 195.99 80.97
90.0 204.80 76.73

Table 9.7: The results of the multi-orientation routine.

E1 [GPa] E2 [GPa] G12 [GPa] ν12 [–]
200.85 205.26 76.91 0.246

The Bond Coat Properties

The elastic properties of the bond coat were identified in two different ways.
Approach 1 — The coating properties were identified keeping the properties of
the substrate fixed at the values identified from the pure substrate specimens.
With the single-orientation routine, the coating properties were identified from
the fundamental flexural and torsional frequencies of a single beam-shaped
specimen. The substrate properties were fixed to the values of table 9.6 for the
appropriate material orientation. With the multi-orientation routine, the coat-
ing properties were identified using all the beam-shaped samples with the same
nominal coating thickness, i.e. 250 µm or 500 µm. During the identification,
the substrate properties were fixed to the values of table 9.7.
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Figure 9.6: The elastic properties of the steel substrate.
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Approach 2 — Since there were two different layer configurations available,
i.e. a coating thickness of 250 µm and 500µm, it was possible to identify the
properties of both substrate and coating from the coated samples. Using the
single-orientation routine, the properties were identified from the resonant fre-
quencies of a sample set that comprised all the test beams cut in the same
material direction. With the multi-orientation routine, the elastic properties
were identified from the resonant frequencies of the sample set that comprised
all the coated beam-shaped specimens.

Table 9.8: The averages of the single-orientation results, approach 1.

250 µm coating 500µm coating
Dir. [◦] E [GPa] G [GPa] ν [–] E [GPa] G [GPa] ν [–]

0.0 22.64 8.81 0.284 27.63 11.27 0.226
45.0 23.43 8.98 0.306 28.89 11.24 0.285
90.0 23.32 9.17 0.272 27.99 11.63 0.203

Table 9.9: The multi-orientation results, approach 1.

E1 [GPa] E2 [GPa] G12 [GPa] ν12 [–]
250 µm coating 22.83 23.59 9.04 0.287
500 µm coating 27.94 28.47 11.50 0.256

Table 9.8 and 9.9 present the single- and multi-orientation results of the first
identification approach; figure 9.7 provides a graphical representation. The
average difference between the properties obtained with the single- and multi-
orientation routine is about 1.1% for the elastic and shear modulus. The
differences between the single- and multi-orientation Poisson’s ratios was 5.2 %
or 16.6% for the 250µm or 500µm thick coating layer, respectively. The ob-
tained results do not show a significant variation of the properties in function
of the material orientation, which indicated that the bond coat was elastically
isotropic. But the coating properties appeared to be varying in function of the
coating thickness4. The 500µm thick coating had an elastic and shear modulus
that were about 20 % higher than the respective moduli of the 250µm thick
coating.
A microstructural characterisation of the bond coat revealed that the 250µm
thick layer had a slightly higher concentration of microcracks and other imper-
fections than the 500 µm layer. The SEM results thus supported the statement
that the elastic and shear modulus increased with an increasing coating thick-
ness. With an uncertainty analysis, it is possible to determine whether the
difference between the properties of the 250 µm and 500µm coating can be due

4The elastic properties of the coating vary as a function of the coating thickness. This is
not the same as claiming that the elastic coating properties vary in the thickness direction. In
the identification procedure, the coatings were considered to be homogeneous. This implies
that these tests did not provide any information on the variation of the layer properties in
the thickness direction.
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Figure 9.7: The properties of the NiCoCrAlY BC, approach 1.
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to the spread of the identified parameters, or if the two layers actually have
significantly different elastic properties. Consider the following uncertainties of
the input parameters.

Table 9.10: The uncertainties of the input parameters.

Uncertainty Units
Length ± 0.02 [mm]
Width ± 0.02 [mm]
Mass ± 0.001 [g]
Substrate thickness ± 0.002 [mm]
Coating thickness ± 0.040 [mm]
Resonant frequencies ± 0.1 [%]

The most uncertain parameter is the coating thickness. As a precaution, the
uncertainty of the average coating thickness was taken relatively high. This
was done so as to make sure that the uncertainty of the identified parameters
was not underestimated. The output uncertainties were estimated with the
probabilistic uncertainty analysis routine introduced in chapter 7. Figure 9.8
presents the obtained confidence intervals. The plots reveal that the difference
between the properties of the 250µm and 500 µm coating layers was not the
result of the input parameter uncertainties. The confidence intervals of the
elastic moduli only overlaped for confidence levels higher than 97%, while the
confidence intervals of the shear modulus did not even overlap for a confidence
level as high as 99.7 %. Based on this, it is clear that the two coating layers
have different elastic and shear moduli. However, the difference in Poisson’s
ratio can easily be the result of the uncertainty of the input parameters.
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Figure 9.8: The confidence intervals of the BC properties.
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The second identification approach provided the properties of both substrate
and coating. However, in the case of the considered bond coat this approach
could not be used. The 250 µm and 500µm thick coatings did not have the
same elastic properties, while the second identification approach made the as-
sumption that the properties of the coating did not vary with the coating
thickness. It is thus very unclear how the identified parameters should be in-
terpreted. For reasons of completeness, appendix E provides an overview of
the properties obtained with the second identification approach.

The Top Coat Properties

The technician who cut the test beams from the initial plates made a mistake
while cutting the specimens with the 250µm thick TC. Instead of cutting three
samples in every material direction, he cut four samples in the 0◦ direction and
only two specimens in the 90◦direction. The initial test plates also had a
number of suspension holes which can be seen in figure 9.5. Unfortunately, the
technician did not notice these holes and cut a sample from an area that covered
one of the suspension holes. Furthermore, after measuring the specimens and
comparing the obtained data, it appeared that specimen ACT-14 had a much
higher damping than all the other samples. This is an indication of possible
delamination of the coating layer due to the cutting process.
The TC properties were identified with the same identification approaches used
to estimate the BC properties. Tables 9.11 and 9.12 present the single- and
multi-orientation results of the first identification approach, while figure 9.9
provides a graphical representation. The average difference between the prop-
erties obtained with single- and multi-orientation routine is 6.2 % for the elastic
modulus, and 1.5% for the shear modulus. Note that the TC was found to have
a Poisson’s ratio of zero, therefore it is not meaningful to compute the relative
difference between the Poisson’s ratios obtained with the single- and multi-
orientation routine. Like for the bond coat, there is no significant variation in
the properties as a function of the material orientation, which indicated that
the ceramic top coat was also isotropic. In contrast to the bond coat, the
properties of the TC did not vary in function of the coating thickness.
Figure 9.2 shows the microstructure of the TC, revealing the presence of a
huge amount of internal microcracks. Due to these microcracks, the material is
more or less segmented, so that a deformation in one direction does not cause
a deformation in an orthogonal direction, which means that there is no Poisson
effect. The properties identified with the MNET routine thus agree with the
results of the microstructural characterisation of the TC by SEM.

Table 9.11: The averages of the single-orientation results, approach 1.

250 µm coating 500µm coating
Dir. [◦] E [GPa] G [GPa] ν [–] E [GPa] G [GPa] ν [–]

0.0 22.80 11.72 −0.021 24.49 12.39 −0.012
45.0 25.85 12.38 0.049 26.17 12.09 0.083
90.0 22.90 12.19 −0.054 22.45 11.87 −0.054

Note that the properties of sample ATC-14, which was probably damaged, and
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Figure 9.9: The properties of the 8YSZ TC, approach 1.
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Table 9.12: The multi-orientation results, approach 1.

E1 [GPa] E2 [GPa] G12 [GPa] ν12 [–]
250 µm coating 24.72 24.57 12.018 0.000
500 µm coating 25.60 24.27 12.157 0.037

sample ATC-18, which had a suspension hole, were rejected. Also note that
the multi-orientation routine used a weighted least-square cost-function. The
weighting coefficients were chosen in such a way that every material direction
had the same importance. Table 9.13 gives an overview of the used weighting
coefficients (wi). Appendix E presents all the results in detail.

Table 9.13: The weighting coefficients of the multi-orientation routines.

250 µm coating 500 µm coatingDir. [◦]
ns wi

∑
nswi ns wi

∑
nswi

0.0 4 0.75 3.00 2 1.50 3.00
45.0 3 1.00 3.00 3 1.00 3.00
90.0 2 1.50 3.00 2 1.50 3.00

Since the properties of the TC did not vary with the coating thickness, the
properties of both substrate and coating could be identified by means of a
sample set that comprised specimens with both a 250µm and a 500µm coat-
ing layer. Table 9.14 and 9.15 present the results of the second identification
approach for the single- and multi-orientation routine, respectively. The plots
of figures 9.10 and 9.11 present these results in a graphical form.
With the single-orientation routine, the properties were identified from a sam-
ple set that comprised all the coated samples representing the same material
orientation. The response weights in the MNET’s cost-function were chosen
in such a way that the layer configurations, i.e. the 250µm and 500µm thick
coatings, always had the same importance, i.e. the response weights of table
9.13. The single-orientation routine provided acceptable results. The average
difference between the identified and reference5 substrate properties was about
1.4%, while the average difference between the identified and reference6 coating
properties was estimated at about 10%.
With the multi-orientation routine, the elastic properties were identified from
the resonant frequencies of a sample set that comprised all the coated samples,
using the response weights of table 9.13. Table 9.15 presents the results of the
multi-orientation routine. For the substrate properties, there was an average
difference of only 0.4 % between the identified and reference properties. For the

5The properties obtained with the multi-orientation routine on the pure substrate samples
are used as reference data for the substrate.

6The average of the properties obtained with the first identification approach using the
multi-orientation routine are used as reference data for the coating.
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Table 9.14: The single-orientation results, approach 2.

Substrate properties TC properties
Dir. [◦] E [GPa] G [GPa] E [GPa] G [GPa] ν [–]

0.0 199.83 76.76 24.97 12.63 −0.012
45.0 198.18 79.44 22.71 13.07 −0.131
90.0 201.23 78.70 27.04 10.63 0.272

coating properties, there was an average difference of 1.5 % from the reference
properties7.

Table 9.15: The multi-orientation results, approach 2.

E1 [GPa] E2 [GPa] G12 [GPa] ν12 [–]
Substrate 200.63 205.65 76.88 0.243
TBC 25.86 24.14 12.17 0.052

Discussion

Unlike the plate shaped specimens, the beam-shaped specimens provided mean-
ingful results. Using the beam-shaped specimens, the elastic parameters of the
substrate and coatings could be identified. Both coatings proved to be elas-
tically isotropic8. For the bond coat, the elastic and shear moduli of the 500
µm thick layer were found to be about 20 % higher than the respective moduli
of the 250 µm thick layer. An uncertainty analysis revealed that this differ-
ence could not be attributed to the uncertainty of the identified properties.
The bond coat properties thus varied in function of the thickness of the coat-
ing layer. This implies that the bond coat properties could not be identified
from a sample set that comprised specimens with different coating thicknesses.
The properties of the top coat did not vary in function of the thickness. The
TC properties were identified in two different ways: using a combination of
coated and uncoated samples, and using a combination of coated samples with
different coating thicknesses. Both identification approaches provided similar
results. Note that the TC was found to have a zero Poisson’s ratio, and that
this observation was supported by the microstrucural characterisation.

9.2.4. Conclusions

A few interesting conclusions concerning the performance of the MNET rou-
tines can be drawn from the test case presented in this section.

7The Poisson’s ratio of the TBC is very low, a small difference in absolute terms easily
results in a large relative difference. Therefore, the difference on the Poisson’s ratio values
were not taken into account for the calculation of the average difference with the reference
properties.

8The considered identification methods only provide information about the in-plane be-
haviour. The coatings are isotropic in the plane of the samples, however, the elastic properties
in the transverse direction may vary from the in-plane properties.
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The experiments confirmed the conclusions of the theoretical study of appen-
dix C. The influence of the sample curvature on resonant frequencies of plate-
shaped specimens was indeed too large for material identification purposes. As
predicted, the identification of the layer properties from the resonant frequen-
cies of beams-shaped specimens did not pose any problems. It is thus advisable
to use a set of beam-shaped samples to identify the properties of coatings.
In case the substrate properties can be measured from a set of pure substrate
samples, the identification of the coating properties functions well for both the
single- and multi-orientation routines. If the coating is isotropic, the single-
orientation routine can provide an acceptable estimation of the coating’s Pois-
son’s ratio, even with an anisotropic substrate.
In case the substrate properties cannot be measured from a set of pure substrate
samples, the coating properties can be identified from two layer configurations
with the same substrate but with a different coating thickness. In this situa-
tion, the multi-orientation routine is clearly superior to the single-orientation
routine, i.e. the single-orientation routine provides a rough estimation of the
properties, while the multi-orientation routine identifies the properties.

9.3. Electron Beam – Physical Vapour Deposited Coatings

9.3.1. Introduction

The NiCoCrAlY and the yttria-stabilised zirconia coatings studied in the pre-
vious test case can also be produced with the electron beam – physical vapour
deposition (EB-PVD) technique. With this technique, the ceramic material is
vaporised into a gas phase and ionised by a high-power electron beam. The
substrate is heated to improve adhesion and electrically loaded to attract the
ceramic ions. Eventually, the ceramic vapour condenses onto the substrate
forming the coating layer. Note that the whole process takes place in a vacuum
chamber to prevent the contamination of the coating with foreign molecules.

40 µm

40 µm

100 µm

Top coat

Bond coat

Figure 9.12: The microstructure of the EB-PVD TBCs. (SEM pictures used

with kind permission of K. Lambrinou.)
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The EB-PVD coatings had a fundamentally different microstructure9 than the
APS coatings. The EB-PVD bond coat was a dense material without cracks or
pores. The EB-PVD top coat had a columnar structure. Figure 9.12 displays
the microstructure of both BC and TC.

9.3.2. The Test Samples

The EB-PVD test samples were cylinders with a nominal length of 67 mm
and a substrate diameter of about 2mm. The substrate material was the Ni-
based super-alloy Inconel 625. Ten substrates were produced by machining
cylinders from a monolithic block of Inconel. Nine substrates were coated with
a layer of bond coat. Seven of the coated samples also received a layer of TC.
Figure 9.13 presents the layer configurations of the ten test samples. Note that
between every intermediate step of the coating process, the diameter of the test
specimens was measured with a microscope.
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Figure 9.13: The layer configurations of the ten test samples.

For every test sample, the length, layer thicknesses, mass, and resonant fre-
quency of the first flexural mode were determined. Table E.66 of appendix E
presents the measured sample properties. For identification purposes, the ten
test samples were grouped into five different sample sets; table 9.16 gives an
overview.

Table 9.16: The considered sample sets of EB-PVD cylinders.

Set 1 Set 2 Set 3 Set 4 Set 5
ECC-01 ✓ ✓ — ✓ —
ECC-02 — ✓ ✓ ✓ —
ECC-03 — ✓ ✓ ✓ —
ECC-04 — — — ✓ ✓
ECC-05 — — — ✓ ✓
ECC-06 — — — ✓ ✓
ECC-07 — — — ✓ ✓
ECC-08 — — — ✓ ✓
ECC-09 — — — ✓ ✓
ECC-10 — — — ✓ ✓

9The microstructural characterisation of the EB-PVD coatings presented in this thesis was
performed by Dr. K. Lambrinou of the department of metallurgy and material engineering
of the Katholieke Universiteit Leuven.
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9.3.3. The Identification Routine

Chapter 6 does not present any routines to identify elastic properties using
cylindrical specimens. However, cylindrical specimens behave basically the
same as beam-shaped specimens. There is only one important difference: it is
practically impossible to measure torsional frequencies of cylindrical specimens.
As a result, the measured frequencies only provide information about the elastic
moduli.
The single-orientation routine for beam-shaped specimens can be modified to
identify the properties of cylindrical specimens. Layered cylindrical specimens
can easily be modelled with the finite element method. Figure 9.14 shows
a close-up of the mesh of an EB-PVD sample with both BC and TC. Note
that the coating layers are partially removed for visualisation purposes. In the
MNET, the fundamental flexural frequencies of the FE-models were updated
by fine-tuning the elastic moduli of the substrate and coating layers. Once
the solution has converged, the procedure was aborted, and the elastic moduli
could be extracted from the material database of the FE-models.

Y

X

Z

Top coat

Bond coat

Substrate

Figure 9.14: Close-up of the FE-model, a part of the coating was removed
for visualisation purposes.

9.3.4. The Identified Properties

The Substrate

The first sample was a pure, uncoated substrate. The Inconel 625 properties
can be derived from the resonant frequency of the fundamental flexural mode of
this sample, i.e. sample set 1. The identification resulted in an elastic modulus
of 203.86GPa. Because of the simplicity of the identification procedure, this
value is assumed to be reliable. Therefore, it was used as a reference value to
estimate the accuracy of the properties identified from the coated specimen.

The Bond Coat

The second and third sample were only coated with a bond coat. The identifi-
cation of a uniform coating requires two different layer configurations. Useful
sample sets were: a set comprising coated and uncoated substrates, or a set
comprising coated samples with different coating thicknesses.
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Sample set 2 comprises the substrate sample and the two samples with bond
coat. To balance the importance of the resonant frequencies of the two layer
configurations, the frequency of the uncoated sample was given a weighting
coefficient of 2, while the frequencies of the bond coat samples were given a
weighting coefficient of 1. Table 9.17 presents the results obtained from set 2.

Table 9.17: The results obtained using sample set 2.

E [GPa]
Sub 204.74
BC 194.90

Sample fexp [Hz] fnum [Hz] Diff. [%] wi [–]
ECC-1 3860.72 3869.02 −0.21 2
ECC-2 4038.85 4003.74 0.87 1
ECC-3 4370.02 4389.21 −0.44 1

Since the coating of sample ECC-3 was about two times as thick as the coating
of sample ECC-2, the bond coat properties could also be identified from a
sample set comprising the two bond coated samples, i.e. sample set 3. Table
9.18 presents the results obtained from this sample set.

Table 9.18: The results obtained using sample set 3.

E [GPa]
Sub 213.85
BC 176.35

Sample fexp [Hz] fnum [Hz] Diff. [%] wi [–]
ECC-2 4038.85 4038.85 0.00 1
ECC-3 4370.02 4370.02 0.00 1

Note that the zero residuals associated with sample set 3 do not imply a high
reliability of the results. The identification problem linked to sample set 3
identifies two unknown parameters from two experimental quantities, so math-
ematically, there has to be an exact solution. Therefore, the zero residuals just
indicate that the problem was not overdetermined, they do not provide any
information about the reliability of the identified elastic properties.

The Top Coat

The identification of the properties of the ceramic top coat required three dif-
ferent layer configurations. The full sample set, i.e. set 4, comprised one pure
substrate, two samples coated only with BC, and seven samples coated with
both BC and TC. To have a balanced weighting between the three layer con-
figurations of this sample set, the response of the pure substrate was weighted
with a factor 7, the responses of the two bond coat samples were weighted with
a factor 3.5, and the responses of the other samples were weighted with a unit
weight. Table 9.19 presents the results obtained from sample set 4.
Sample set 5 comprised only the cylinders that were coated with both BC and
TC. The thicknesses of the BC and TC were not constant but varied from
sample to sample; only samples ECC-6, ECC-7, and ECC-8 had the same
nominal thickness for the two coating layers. Since the sample set comprised
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Table 9.19: The results obtained using sample set 4.

E [GPa]
Sub 204.84
BC 193.73
TC 35.74

Sample fexp [Hz] fnum [Hz] Diff. [%] wi [–]
ECC-1 3860.72 3869.97 −0.2 7
ECC-2 4038.85 4002.21 0.9 3.5
ECC-3 4370.02 4384.84 −0.3 3.5
ECC-4 3844.40 3838.15 0.2 1
ECC-5 3803.14 3794.66 0.2 1
ECC-6 4004.45 4008.36 −0.1 1
ECC-7 4002.17 3984.70 0.4 1
ECC-8 4008.97 4041.03 −0.8 1
ECC-9 4305.94 4335.76 −0.7 1
ECC-10 4307.72 4288.02 0.5 1

more than three layer thickness sets with a significant difference, it could be
used to identify the properties of the three considered materials. Table 9.20
provides the results obtained from sample set 5.

Table 9.20: The results obtained using sample set 5.

E [GPa]
Sub 202.68
BC 189.18
TC 42.61

Sample fexp [Hz] fnum [Hz] Diff. [%] wi [–]
ECC-4 3844.40 3832.51 0.3 1
ECC-5 3803.14 3800.92 0.1 1
ECC-6 4004.45 4011.23 −0.2 1
ECC-7 4002.17 3987.37 0.4 1
ECC-8 4008.97 4043.24 −0.9 1
ECC-9 4305.94 4316.44 −0.2 1
ECC-10 4307.72 4284.85 0.5 1

Discussion

The elastic moduli of the substrate and coating layers were identified using five
different sample sets. Table 9.21 gives an overview of the results and compares
the obtained elastic moduli with the reference values.
Note that there were two different types of sample sets: the first type comprised
a number of layer configurations with a varying number of layers, while the
second type comprised layer configurations with a constant number of layers.
In both types of sample sets, the thickness of the individual layers varied from
one configuration to another. Sample sets 2 and 4 belonged to the first type,
while sample sets 3 and 5 belonged to the second.
Table 9.21 reveals that the results obtained with sample sets 2 and 4 corre-
sponded better to the reference values than the results obtained with sample
sets 3 and 5. This means that, the results obtained with a sample set of the
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Table 9.21: Summary of the obtained results. The results that are used as
reference values are printed in boldface.

ESub EBC ETC

Set 1 203.9 — — — — —
Set 2 204.7 0.4% 194.9 — — —
Set 3 213.9 4.9% 176.4 −9.5% — —
Set 4 204.8 0.5% 193.7 −0.6% 35.7 —
Set 5 202.7 −0.6% 189.2 −2.9% 42.6 19.2 %

[GPa] [GPa] [GPa]

first type appeared to be more reliable than the results obtained with a sample
set of the second type. In the considered case, the sample sets of the second
type provided only a rough estimation of the layer properties.
The comparison of the microstructure of APS and EB-PVD bond coats sug-
gested that the EB-PVD coating should be stiffer than the APS coating. The
MNET routines showed that the EB-PVD bond coat has an elastic modulus
that is about eight times higher than the APS one. The difference between
the two top coats is less severe, since the EB-PVD top coat was only about
20 % stiffer than the APS top coat. This smaller difference is most probably
related to the microstructure of the EB-PVD top coat. Unlike the bond coat,
the EB-PVD top coat does not have a flawless microstructure. The columnar
structure of the top coat introduces a vast amount of interface which, most
likely, has a negative effect on the bending stiffness of the material.

9.3.5. Analytical Identification Approach

The properties of the EB-PVD coatings can also be identified with an extended
version10 of the analytical approach presented in [6]. Table 9.22 presents the
obtained properties and compares them with the reference properties of table
9.21. The analytical approach provides coating properties that are about 1 %
higher than the properties identified with the MNET approach. Appendix D
shows that analytical approach overestimates the coating properties due to the
homogenisation of the stiffness properties during the idetification of the overall
stiffness of the layered samples. Note that the magnitude of this overestimation
varies with the difference in stiffness and thickness of the coating layers.

Table 9.22: The results of the analytical identification approach.

Value Difference
ESub 204.1 0.1 %
EBC 196.2 0.7 %
ETC 36.3 1.2 %

[GPa]

10The extended identification equations are provided in appendix D.
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9.3.6. Conclusion

This test case illustrated the flexibility of the MNET routines; the single-
orientation routine of chapter 6 was easily modified to identify the elastic
moduli from the resonant frequencies of cylindrical specimens. The obtained
results indicated that the optimal sample set to identify the properties of coat-
ings should comprise layer configurations with an increasing number of layers.

9.4. Summary

This chapter presented two applications of layered material identification us-
ing the vibration-based MNET procedures presented in chapter 6. In the first
application, the elastic properties of two plasma sprayed coatings were suc-
cessfully identified. Due to the curvature of the material samples, the elastic
properties could only be correctly identified using a set of beam-shaped samples
that were cut out of the initial material samples. In the second application, the
Young’s modulus of electron beam – physical vapour deposited coating were
identified from a set of ten cylindrical specimens using the single-orientation
routine.
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10
Conclusions

This chapter presents the general conclusions of the work performed
in the framework of this thesis, and provides suggestions for future
research.
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10.1. Conclusions

10.1.1. The MNET Identification Routines

The main goal of this thesis was to develop an identification routine for the
determination of the elastic material properties of the constituent layers of
layered materials.
Based on the classical lamination theory, it has been shown that the bending
stiffness of layered materials is controlled by the overall material stiffness, and
not by the stiffness of the individual layers. Consequently, it is impossible to
identify the elastic properties of the constituent layers from the bending stiffness
of a single test specimen. The bending stiffness of the material can only be
decomposed into layer stiffnesses by using a number of samples with different
layer configurations; a different layer configuration is obtained by changing
the layer thickness or the stacking sequence. It was proven that the minimum
number of required layer configurations equals the number of independent layer
materials that must be characterised.
This work proposes a vibration-based mixed numerical-experimental technique
(MNET) for the identification of the elastic properties of layered materials.
The experimental part of the MNET consists of measuring a number of reso-
nant frequencies on freely vibrating test samples. The numerical part of the
MNET uses finite element models to compute the resonant frequencies of the
test samples. The elastic properties of the constituent layers are identified
by fine-tuning the corresponding model parameters until a match between the
experimental and numerical resonant frequencies is obtained.
Three identification routines, all based on the same MNET approach, have
been introduced in this text. The first routine determines the elastic proper-
ties of isotropic layers from the fundamental flexural and torsional resonant
frequencies of a number of beam-shaped samples, all cut in the same material
direction. The second routine identifies the elastic properties of orthotropic
layers from the fundamental flexural and torsional resonant frequencies of a
number of beam-shaped specimens, all cut in a different material direction.
Note that this routine is based on the new concept of using samples in dif-
ferent material orientations, which enables the identification of the properties
of orthotropic materials using beam-shaped samples. The third identification
routine determines the elastic properties of orthotropic layers from the resonant
frequencies of the first five vibration modes of plate-shaped specimens.
This thesis also introduces an uncertainty analysis procedure for vibration-
based MNET routines. The developed uncertainty analysis routine estimates
the uncertainty of the identified material properties from the uncertainties of
the input parameters in a computationally efficient way. The routine is avail-
able in both a probabilistic and a non-probabilistic form and can be applied to
all three identification routines.
The presented identification techniques are not only provided with a sound
theoretical foundation, they have also been thoroughly evaluated in an exper-
imental way. After being successfully validated on two different purpose-built
layered materials, the vibration-based MNET technique was used to identify
the elastic properties of a number of ceramic coatings.



10.1. CONCLUSIONS 221

10.1.2. Comparison to the State-of-the-Art

The most advanced identification techniques for layered materials found in
literature are the techniques described in [6, 10]. These two techniques were
discussed in the introduction, and were found to have a number of shortcom-
ings. This section compares the developed MNET-based routines with the
techniques of [6, 10] in order to evaluate the contribution of this thesis to the
state-of-the-art.
Orthotropic Materials — The techniques of [6, 10] are limited to materials
with isotropic layers. The MNET-based techniques developed in this thesis
can determine the elastic properties of materials with isotropic, orthotropic, or
a mixture of isotropic and orthotropic layers.
Sample Shape — The vibration-based technique of [6] is restricted to pris-
matic bars with a circular or rectangular cross-section and a symmetric layer
sequence. The quasi-static technique of [10] is limited to beam- and plate-
shaped samples. The MNET-based approach does not pose any significant
restriction on the sample geometry. The MNET-based techniques can be ap-
plied using sample with both a symmetric or a non-symmetric layer stacking
and having any possible regular shape1. Also note that the quasi-static tech-
nique [10] identifies E from beam-shaped specimens and ν from plate-shaped
specimens, while the MNET techniques are able to identify both E and ν on
beam- and plate-shaped specimens.
Sample Set — The techniques of [6,10] require a particular set of test samples,
i.e. a set with specimens that have an increasing number of layers, without jus-
tifying why this is necessary. Chapter 5 shows that this problem is related to
the physics of the mechanical behaviour of layered materials: the bending stiff-
ness only provides information about the overall stiffness, it does not provide
any information about the stiffness of the constituent layers. Any technique
that uses the overall bending stiffness to determine the layer properties will
require a set of test samples with different layer configurations.
Unlike the technique of [6, 10], the MNET-based techniques proposed in this
thesis are capable of identifying the layer properties from a set of samples with
the same number of layers, but different layer thicknesses. This is however
not an advisable approach since uncertainty analyses have shown that opti-
mal results are obtained with a sample set that comprises specimens with an
increasing number of layers.
Partially Coated Samples — Partially coated samples are useful to investigate
the strain-dependent behaviour of ceramic coatings [109]. The techniques of
[6, 10] are incapable of identifying the layer properties using partially coated
specimens. With the MNET-based technique suggested here, partially coated
samples do not pose any problem, as long as the coated area is large enough
to yield a measurable influence on the sample stiffness.
Contactless — The quasi-static technique [10] is not contactless. On the
other hand, the MNET-based identification of the layer properties can easily
be performed in a contactless way, i.e. by exciting the specimen acoustically and

1Beam-shaped, plate-shaped, disk-shaped, cylindrical rods, tubes, rings, etc.
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measuring its response with a laser vibrometer. The MNET-based techniques
can thus be applied to measure the properties of porous or thin brittle materials.
Layer Thicknesses — The first test configuration of the quasi-static technique
[10] does not derive the layer stiffness from the overall bending stiffness of
the test specimen. Because of this, the first configuration of the quasi-static
technique [10] is less sensitive to errors related to layer thicknesses than the
vibration-based identification techniques, a fact that can be considered as an
advantage of the quasi-static technique [10].
Uncertainty — The uncertainty analysis routines that were developed for the
MNET-based techniques are more powerful that the error propagation ap-
proach that is suggested in [10]. Unlike the approach of [10], the MNET un-
certainty analysis routines can provide the worst-case values of the estimated
parameters, the uncertainty contributions of the various input parameters, or
the distributions of the identified elastic parameters.

10.1.3. Using of the MNET Techniques

The vibration-based MNETs that were introduced in this thesis require a sam-
ple set that comprises samples with different layer configurations. Different
layer configurations are obtained by changing the layer thickness or layer stack-
ing. The MNET techniques can be applied to any material with homogeneous
linear elastic layers as long as the required layer configurations can be pro-
duced. Unfortunately, the production of the required layer configurations can
be very complicated or even impossible.
At this moment, the identification of the elastic properties of coatings is ex-
pected to be the most important field of application of the presented routines.
First of all, in the case of coatings it is very straightforward to produce the
required layer configurations. Furthermore, an identification technique for lay-
ered materials is a necesity to identify the propterties of a coating. Alternative
approaches, such as identifying the properties of the coating in a non-layered
form, are rarely meaningful. Separating the coating layer from its substrate
will, most probably, damage the material so that it is no longer useful for iden-
tification purposes. Another option, producing the material in a bulk form,
is usually not possible. Even if the coating material can be produced in bulk
form, it is not certain if the material will have the same properties as when it
is produced under the form of a thin layer. The identification of the properties
from coated substrates using a layered material identification technique is thus
the only viable option.
In general, it is advisable to take the following considerations into account,
when using the MNET-based techniques for the identification of the elastic
properties of layered materials.
Layer Thicknesses — Uncertainty analyses have shown that an accurate mea-
surement of the layer thicknesses is of utmost importance to obtain reliable
elastic properties. Unfortunately, the layer thicknesses are rather difficult to
measure accurately. In fact, the determination of the layer thickness needs to
be integrated in the test procedure; in case of coated specimens for example,
it is advisable to measure the sample thicknesses before and after the coating
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process. The sample and/or layer thicknesses are preferably determined with
a digital micrometer screw, a scanning electron microscope (SEM), or both.
Measuring the thicknesses with a calliper is not advisable.

Additional Layer Configurations — In some cases, the required layer config-
urations have to be produced by adding a glass layer to the material. In this
situation, beam-shaped samples are preferred, since plate-shaped samples are
more prone to creating problems related to non-uniform glue films, especially
when the additional glass layer is relatively thin.

Coatings — A thermal coating process will usually result in sample that has
a residual out-of-plane deformation due to the thermal expansion coefficient
mismatch between coating and substrate material. The resonant frequencies
of plate-shaped specimens are very sensitive to out-of-plane sample deforma-
tion, while the resonant frequencies of beam-shaped specimens are practically
insensitive to it. Therefore, it is advisable to identify the properties of these
coatings from the resonant frequencies of beam-shaped samples.

Thin Layers — There is no lower limit to the thickness of a layer, below which
the determination of its elastic properties using the MNET routines would be
impossible. In general, a layer should be thick enough to provide a significant
contribution to the overall sample stiffness. In case of thin coating layers, the
coating should be deposited on a rather flexible substrate, i.e. a material that
has low elastic properties or is sufficiently thin.

Starting Values — The MNET-based routines need a set of trail values for the
unknown elastic properties that have to be identified. The MNET routines do
not require very accurate starting values for the unknown elastic properties; a
correct order of magnitude is more than accurate enough. Note that the trial
values do not have any influence on the values of the identified parameters,
they will only influence the number of required iteration steps.

Optimal Routine — It is hard to say which one of the three suggested identifi-
cation routines is the optimal technique, since this depends on the investigated
material. However, the multi-orientation routine has shown to be the most
robust and reliable routine for a wide range of applications. Therefore, if there
is no a priori information or experience indicating otherwise, it is advisable to
use the multi-orientation routine to identify the layer properties.

10.2. Recommendations for Future Research

The performance of the vibration-based MNET routines developed in this thesis
could be extended in one or more of the following ways:

Functionally Graded Materials — This thesis only considered layered mate-
rials made of layers with uniform properties and sharp interfaces with the ad-
jacent layers. However, in functionally graded materials (FGMs), the material
properties vary in a continuous way. The application of the presented tech-
niques for the identification of the property gradient of FGMs is not straight-
forward. The current MNET techniques require a discretisation of the property
gradient, so that the material can be segmented in a number of layers with uni-
form properties. The properties of these layers have to be identified from the
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resonant frequencies of a number of sample configurations.
Unfortunately, an accurate approximation of the gradient requires a fine dis-
cretisation with large number of layers and layer configurations, which would
eventually lead to a huge computation time. It would be much more elegant
to create an element formulation for a FGM material, i.e. an element with a
gradient in material properties. The identification of the FGM properties then
reduces to the identification of the parameters used in the element formula-
tion to model the property gradient. This approach should be computationally
faster, and will most probably use the experimental data more efficiently, so
that fewer layer configurations are needed to identify the gradient parameters.
High Temperature Properties — Although this thesis only considered mea-
surements at room temperature, the single- and multi-orientation routines are
designed in such a way that all the required input data can also be measured at
high temperatures. In theory, the presented identification routines should thus
be able to identify the layer properties of orthotropic materials as a function of
temperature. So far, such a test has not been executed, and it thus not known
whether there will be experimental difficulties related to it.
Damping Properties — The presented MNET routines provided only the
elastic properties of the layers, they did not consider their damping properties.
It has been shown that it is possible to identify the damping properties of
homogeneous orthotropic materials from the modal damping ratios [19]. It
is expected that it is possible to identify the damping properties of the layer
materials from the modal damping ratios of the vibration modes of the used
layer configurations; however, this has not yet been attempted.
Complex Sample Shapes — Although only test samples with very simple
shapes, like rectangular plates or cylinders, were used in this thesis, the MNET
routine can in principle identify the layer properties from samples with an
arbitrary shape. However, a number of practical limitations are expected;
these limitations are caused by the limited accuracy of the FE-models, the
sensitivity of the resonant frequencies with respect to the material parameters,
the fabrication of samples with a modified layer configuration, etc.
Interpretation of Uncertainties — This thesis introduced a probabilistic and a
non-probabilistic technique to handle uncertainties, however this does not imply
that the whole uncertainty problem was solved. The presented techniques only
dealt with the mathematics of the uncertainty problem, i.e. the estimation of
the uncertainties of the identified properties from the uncertainties of the input
parameters. The problem of estimating the input parameter uncertainties was
not addressed in this text.



A
The ASTM Standard on
Resonant Beam Testing

This appendix provides the basis of the ASTM standard on resonant
beam testing.



226 A.2. INTRODUCTION

A.1. Introduction

The ASTM standard C 1259-01 [4] presents a number of analytical formulas to
derive the elastic properties of homogeneous isotropic materials from the reso-
nant frequencies of a beam-shaped specimen with a rectangular cross-section.
This standard is based on the work of Spinner and Teft [3].

A.2. Calculating the Elastic Properties

The elastic modulus of an isotropic material can be derived from the resonant
frequency of the fundamental out-of-plane flexural vibration mode of a beam-
shaped specimen as
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The shear modulus of an isotropic material can be derived from the fundamental
torsional frequency of a beam-shaped specimen as

G = 4
m f2

t l

w t

(
B

1 +A

)
(A.3)

where

B =

w

t
+

t

w

4
(
t

w

)
− 2.52

(
t

w

)2
+ 0.21

(
t

w

)6 (A.4)

The coefficient A is an empirical correction factor given by
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If the materials Poisson’s ratio is unknown, it can be obtained from the E and
G modulus as

ν =
E

2G
− 1 (A.6)
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Note that in this case, the E-modulus has to be calculated with an estimation of
Poisson’s ratio. The Poisson’s ratio obtained with (A.6) has to be inserted into
(A.2) to compute an improved value of the E-modulus. The ASTM standard
advises to repeat this iterative calculation until the difference between the
Poisson’s ratios of two successive iteration steps becomes smaller than 2%.
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B
Experimental Set-up &
Measurement Procedures

This appendix presents the experimental test set-ups and measure-
ment procedures used for the test cases of chapter 8.
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B.1. Measuring the Resonant Frequencies

The resonant frequencies of the test specimens were measured by exciting the
test specimens with a computer-controlled loudspeaker, and capturing the vi-
bration response with a laser vibrometer1. The vibration signal was digitised
with a data acquisition card2 and stored into the computer. The resonant
frequencies were estimated from the time signals with the RFDA3 software.
Every frequency was measured five times and the average value was used as
input data for the MNET procedure.

B.1.1. The Measurement Set-up

The resonant frequencies of the beam- and plate-shaped specimens were mea-
sured with a slightly different test set-up. Figures B.1 and B.2 present the two
test set-ups, while figure B.3 provides the legend to these plots.

Figure B.1: The test set-up for beam-shaped specimens.

Figure B.2: The test set-up for plate-shaped specimens.

1Polytec OFV 303
2National Instruments DAQCard-6062E
3IMCE RFDA MF v6.2
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Figure B.3: Legend of the test set-up drawings.

B.1.2. Sample Suspension

The sample suspension should imitate the free-free boundary conditions of the
FE-models as good as possible. In the test set-up, the beam-shaped samples
were supported by two horizontal wires. To minimise the influence of the sup-
porting wires, the wires were positioned at the locations of the nodes of the
considered vibration mode. To measure the resonant frequency of the fun-
damental out-of-plane flexural vibration mode, the sample was supported by
two parallel wires positioned at a distance of 0.224×length from the sample
edges. The resonant frequency of the fundamental torsional mode was mea-
sured, while the sample was supported by two crossed wires. Both types of
sample suspension are shown in figure B.4.

Flexural Torsional

0.224×l0.224×l 0.552×l

0.5×l

0.5×l

0.5×l0.5×l

PSfrag

Excitation point – Loudspeaker Response point – Laser spot

Figure B.4: The position of the supporting wires for beam-shaped samples.

The plate-shaped specimens were suspended using two vertical wires as shown
on figure B.2. An experimental verification revealed that the position of the
suspension wires did not influence the resonant frequencies of the plate-shaped
samples. All the resonant frequencies could, therefore, be measured with the
same suspension configuration. However, every vibration mode required a par-
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ticular excitation and response location. Figure B.5 presents the optimal con-
figurations to measure the resonant frequencies of the first five vibration modes
of a Poisson plate.

Torsional Saddle Breathing TorFlex-X TorFlex-YPSfrag

Excitation point – Loudspeaker Response point – Laser spot

Figure B.5: The excitation and response locations for the first five vibration
modes of a plate-shaped specimen.

B.2. Measuring the Sample Properties

The MNET routines also required the length, width, thickness, mass, and
orientation of the test specimens. For the experiments described in chapter
8, the length and width were measured with a digital calliper4. For the beam-
shaped specimens, the length and width were the average values of three and
five measurements, respectively, as shown in figure B.6. For the plate-shaped
specimens, the length and width were measured in five points as shown on figure
B.8. The samples thickness was measured with a digital micrometer screw5

according to the schemes of figures B.7 and B.8. The sample thickness was
the average value of thickness measured in these five, ten or sixteen locations.
The mass was measured with a digital balance6. The specimen orientations
were not measured. All the test specimens were cut out of a material sample
with a computer controlled laser or high pressure water jet cutting device.
The orientations used for the identification were the orientations that were
programmed into the cutting device to produce the test specimens.

Length Width

Figure B.6: Measuring the dimensions of a beam-shaped specimen.

4Mitutoyo Digimatic 500
5Mitutoyo Digimatic 293
6Mettler AE240
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Width > 15 mm Width < 15 mm

Figure B.7: Measuring the thickness of a beam-shaped specimen.

Length Width Thickness

Figure B.8: Measuring the dimensions of a plate-shaped specimen.
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C
The Influence of an
Out-of-Plane Sample
Deformation

Not every test material is available in a perfectly flat form. This
appendix investigates the influence of an out-of-plane deformation
of the test specimen on the resonant frequencies used for the iden-
tification of the elastic material properties.
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C.1. Introduction

Layered material identification requires a number of test samples with a varying
layer configuration. Coated materials are a class of materials where the required
layer configurations can easily be produced, e.g. by changing the thickness of
the coating layer. The identification of the elastic properties of coated materials
is thus an important area, where the presented vibration-based MNETs could
be applied.
Adding a layer of coating to a substrate will usually result in an out-of-plane
deformation of the substrate. Since this deformation might have an effect
on the resonant frequencies, it should be measured and incorporated in the
FE-model of the MNET. Unfortunately, this is a very elaborate process that
will complicate both the experimental and the modelling phase. It would be
much easier to use samples, where the deformation does not affect the resonant
frequencies. In this way, the deformation does not have to be measured and
modelled.
This appendix addresses two types of deformation patterns: curvature and
twisting. The influence of the sample deformation on the resonant frequencies
was evaluated with a number of FE-models of an aluminium test beam and
plate. The properties of the considered aluminium are shown in table C.1.
Table C.2 presents the geometry of the considered test specimens.

Table C.1: The material properties of the considered aluminium.

E1 [GPa] E2 [GPa] G12 [GPa] ν12 [–] ρ [kg/m3]
70.00 70.00 26.00 0.340 2700

Table C.2: The geometry of the test specimens.

Length [mm] Width [mm] Thickness [mm]
Beam 100.00 20.00 1.000
Plate 100.00 95.00 1.000

The influence of the deformation on the resonant frequencies is estimated by
comparing the frequencies of a perfectly flat sample with the frequencies of a
deformed sample. The deformation amplitude is gradually increased to study
its influence on the resonant frequencies of the test samples.
For beam-shaped samples, two types of deformation patterns are investigated:

- beams curved in the long direction
- twisted beams

For plate-shaped samples, three deformation patterns are investigated:
- plates curved in one direction
- plates curved in both directions
- twisted plates

For the beam-shaped specimens, only the fundamental flexural and torsional
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resonant frequencies are considered; for the plate-shaped specimens, the reso-
nant frequencies of the first five vibration modes are investigated.

C.2. Beam-Shaped Specimens

C.2.1. Curved Beams

δ

Figure C.1: A curved beam-shaped specimen.

Table C.3: The fundamental resonant frequencies in function of the deforma-
tion amplitude δ.

δ [mm] ff [Hz] ft [Hz]
0.00 524.872 1545.773
0.10 524.869 1545.766
0.20 524.859 1545.746
0.30 524.844 1545.712
0.40 524.822 1545.664
0.50 524.794 1545.602
0.60 524.759 1545.527
0.70 524.719 1545.439
0.80 524.672 1545.336
0.90 524.619 1545.220
1.00 524.560 1545.090

Deformation amplitude δ [mm]
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Figure C.2: The frequency shift in function of the deformation amplitude δ.

The curvature in the long direction of a beam-shaped specimen does not seem to
have a significant influence on the fundamental flexural and torsional frequen-
cies of the sample. The maximal considered deflection amplitude, a deflection
that equals the sample thickness, caused a frequency shift of only 0.06 %.
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C.2.2. Twisted Beams

δ

Figure C.3: A twisted beam-shaped sample.

Table C.4: The fundamental resonant frequencies in function of the deforma-
tion amplitude δ.

δ [mm] ff [Hz] ft [Hz]
0.00 524.872 1545.773
0.10 524.871 1545.813
0.20 524.869 1545.934
0.30 524.866 1546.135
0.40 524.862 1546.416
0.50 524.856 1546.778
0.60 524.849 1547.219
0.70 524.840 1547.741
0.80 524.831 1548.342
0.90 524.820 1549.022
1.00 524.807 1549.782
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Figure C.4: The frequency shift in function of the deformation amplitude δ.

Twisting a beam-shaped sample appears to have practically no influence on
its fundamental flexural frequency. However, the influence of twisting on the
fundamental torsional frequency seems to be important. For the maximum
considered deformation amplitude, the observed frequency difference is about
twice the uncertainty of the experimental frequencies. This means that for
twisted specimens, it is advisable to examine whether the influence of the de-
formation must be taken into account or not. Note that the influence on the
resonant frequencies is proportional to the deformation amplitude to thickness
ratio. This means that the influence of the twisting deformation can be reduced
by using smaller samples.
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C.3. Plate-Shaped Samples

C.3.1. Curved in One Direction

δ

Figure C.5: A plate-shaped specimen curved in one direction.

Table C.5: The frequencies in function of the deformation amplitude δ.

δ [mm] ftors [Hz] fsadd [Hz] fbrea [Hz] ftf−x [Hz] ftf−y [Hz]
0.00 341.641 495.971 647.173 873.797 907.597
0.10 341.640 496.363 647.822 873.795 907.724
0.20 341.639 497.514 649.782 873.788 908.106
0.30 341.636 499.350 653.085 873.775 908.742
0.40 341.633 501.754 657.780 873.758 909.631
0.50 341.628 504.584 663.922 873.735 910.772
0.60 341.623 507.685 671.560 873.705 912.164
0.70 341.616 510.902 680.725 873.669 913.805
0.80 341.609 514.104 691.421 873.626 915.694
0.90 341.600 517.184 703.615 873.576 917.826
1.00 341.590 520.068 717.243 873.517 920.202
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Figure C.6: The frequency shift in function of the deformation amplitude δ.

This type of curvature has a severe impact on the resonant frequency of the
second and third vibration modes of a plate-shaped specimen, i.e. the saddle
and breathing modes. The maximal considered deformation increases the third
resonant frequency by about 11 %, and the second frequency with by 5%. Since
these two frequencies are very important for the estimation of the E-moduli and
Poisson’s ratio, it is useless to perform an identification using the frequencies
of a curved plate-shaped specimen without taking the curvature into account.
Note that the influence on the torsional frequeny is essensially non-existing.
This implies that the torsional frequency of a plate-shaped specimen, curved in
one direction, will provide a correct estimation of the in-plane shear modulus.
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C.3.2. Curved in Both Directions

δ

Figure C.7: A plate-shaped specimen curved in both directions.

Table C.6: The frequencies in function of the deformation amplitude δ.

δ [mm] ftors [Hz] fsadd [Hz] fbrea [Hz] ftf−x [Hz] ftf−y [Hz]
0.000 341.641 495.971 647.173 873.797 907.597
0.100 341.641 495.996 647.606 873.816 907.612
0.200 341.641 496.071 648.902 873.872 907.658
0.300 341.642 496.193 651.054 873.965 907.734
0.400 341.644 496.357 654.050 874.095 907.841
0.500 341.645 496.557 657.874 874.260 907.976
0.600 341.647 496.788 662.505 874.462 908.140
0.700 341.649 497.041 667.915 874.698 908.332
0.800 341.652 497.312 674.074 874.967 908.550
0.900 341.654 497.593 680.946 875.269 908.793
1.000 341.657 497.880 688.492 875.603 909.059
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Figure C.8: The frequency shift in function of the deformation amplitude δ.

This type of curvature has a major impact on the resonant frequency of the
third vibration mode of a plate-shaped specimen, i.e. the breathing mode. The
maximal considered deformation results in an increase of the third resonant
frequency by about 6.5 %. The influence on the other frequencies is limited
to 0.4 %. Since the frequency of the third mode is essential for the estimation
of the E-moduli and Poisson’s ratio, it is useless to perform an identification
using the frequencies of a curved plate-shaped specimen without taking the
curvature into account. Note that the influence on the torsional frequeny is
practically non-existing. This implies that the torsional frequeny of a plate-
shaped specimen, curved in both directions, will provide a correct estimation
of the in-plane shear modulus.
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C.3.3. Twisted Plates

δ

Figure C.9: A twisted plate-shaped specimen.

Table C.7: The frequency in function of the deformation amplitude δ.

δ [mm] ftors [Hz] fsadd [Hz] fbrea [Hz] ftf−x [Hz] ftf−y [Hz]
0.000 341.641 495.971 647.173 873.797 907.597
0.100 341.742 495.971 647.172 873.835 907.628
0.200 342.045 495.970 647.170 873.947 907.722
0.300 342.549 495.968 647.167 874.133 907.878
0.400 343.254 495.966 647.163 874.394 908.097
0.500 344.158 495.964 647.157 874.730 908.378
0.600 345.260 495.960 647.150 875.140 908.721
0.700 346.557 495.957 647.142 875.624 909.127
0.800 348.047 495.952 647.132 876.182 909.595
0.900 349.727 495.947 647.122 876.814 910.124
1.000 351.595 495.942 647.110 877.519 910.716

Deformation amplitude δ [mm]
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Figure C.10: The frequency shift in function of the deformation amplitude δ.

The maximal considered deformation results in an increase of the torsional
frequency by about 3 %. The influence on the other frequencies is less signif-
icant, and is limited to about 0.45 %. Note that the frequencies of the saddle
and breathing modes are not affected, implying that a twisted plate-shaped
specimen can provide a correct estimate of the Poisson’s ratio.

C.4. Conclusions

The resonant frequencies of beam-shaped specimens are hardly affected by a
curvature of the test sample. Moreover, the influence of a twisting deformation
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is more pronounced but acceptable. In general, the influence of the deformation
is sufficiently small, so that the resonant frequencies of slightly deformed beam-
shaped specimens can be used for identification purposes without having to take
into account the deformation in the FE-models of the MNET.
On the other hand, the resonant frequencies of plate-shaped specimens proved
to be much more sensitive to the deformation of the test sample. The in-
fluence of the sample deformation on the resonant frequencies is significant.
Consequently, even slightly deformed plate-shaped specimens cannot be used
for identification purposes without taking into account the deformation in the
FE-models of the MNET. With plate-shaped specimens, it is advisable to cut a
series of beam-shaped specimens out of the initial test plate, instead of measur-
ing the deformation and taking it into account in the identification procedure.
An application of this approach is presented in section 9.2.
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The Analytical Approach for
Layered Cylinders
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D.1. Identification Formulas for Cylindrical Specimens

D.1.1. Homogenenous Specimens

The elastic modulus of cylindrical bars can be derived from the resonant fre-
quency of the fundamental flexural mode [4] as

E = 1.6067
m f2

f l3

d 4
T1 (D.1)

in which d is the diameter of the cross-section and T1 is a correction factor
defined as

T1 = 1 + 4.939
(
1 + 0.0752ν + 0.8109ν2

)(d
l

)2
− 0.4883

(
t

l

)4

−


4.691

(
1 + 0.2023ν + 2.173ν2

)(d
l

)4
1.000 + 1.754 (1 + 0.1408ν + 1.536ν2)

(
d

l

)2


(D.2)

D.1.2. Layered Specimens

Figure D.1 presents the three layer configurations of the EB-PVD cylinders.

Substrate

Bond Coat

Top Coatrsrsrs

tBCtBC

tTC

Substrate 1 coating layer 2 coating layers

Figure D.1: A cross-section of the coated cylinders.

The elastic modulus of the substrate can be identified with (D.1) from the
resonant frequency of the pure substrate. According to [6], the elastic modulus
of the bond coat can be identified as

EBC =
Etot1(rs + tBC)4 − Es r

4
s

(rs + tBC)4 − r4s
(D.3)

in which Etot1 is the elastic modulus identified with (D.1) from the resonant
frequency of the test samples with one coating layer. Using the same reason-
ing as in [6], it can be shown that the top coat properties of the considered
specimens can be identified with
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ETC =
Etot2(rs + tBC + tTC)4 − Es r

4
s − EBC

(
(rs + tBC)4 − r4s

)
(rs + tBC + tTC)4 − (rs + tBC)4

(D.4)

in which Etot2 is the elastic modulus identified with (D.1) from the resonant
frequency of the test samples with two coating layer.

D.2. Evaluation of the Identification Approach

D.2.1. Comparison of the ASTM Formula with FEM

The ASTM formula can be rewritten into a from that allows to compute the res-
onant frequency of the fundamental flexural mode of a homogeneous, isotropic
cylindrical sample. Consider a test sample with a length of 70mm and a diam-
eter of 4 mm made of an isotropic material with an elastic modulus of 205 GPa,
a Poisson’s ratio of 0.25 and a mass density of 8400 kg/m3. For this sample
equation (D.1) provides a resonant frequency ff of 3559.6. A 3D finite element
model of this sample provides a resonant frequency ff of 3561.5. The difference
between the ASTM formula and the FE-model is thus 0.05%, which is lower
than the assumed accuracy of both the FE-model and the ASTM formula1. The
ASTM formula and the FE-model thus provide the same resonant frequency,
within the limits of their accuracy.

D.2.2. Verification of the Identification Approach of [6]

The identification approach of [6] makes two important simplifications: a) the
identification formula (D.1) only uses the overall mass of the test sample, there-
fore it ignores the differences in mass density between the various layers, and
b) the identification formula (D.1) uses a uniform Young’s modulus for the
whole sample, therefore it ignores the difference in stiffness of the various lay-
ers. The classical lamination theory (CLT) shows that the influence of these
two assumptions is minimal in the case of plate-shaped samples. However, the
CLT assumes that the layers of the material are parallel with the neutral plane
of the considered bending deformation, which is not the case for a cylindri-
cal specimen. It is thus not so obvious that these two simplifications are also
correct here.
To evaluate the validity of the two assumptions, consider the nine test spec-
imens of tables D.1 and D.2. The resonant frequencies of the fundamental
flexural mode of these nine test samples were computed with a finite element
model. The elastic properties of the layer materials can be identified from these
resonant frequencies using equations (D.1), (D.3), and (D.4). The accuracy of
the identified parameter can be evaluated by comparing the obtained results
with the elastic properties that were used in the FE-models to compute the
frequencies.
The sample set comprising sample 1, 2, and 3 represents the situation where
there is (virtually) no variation in E-modulus and mass density between the
three layers. Table D.3 presents the identified properties. The first sample set

1The accuracy of the ASTM formulas and the converged FE-models is estimated at 0.1%.
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Table D.1: The geometry and resonant frequencies of the test samples.

Id. l rs tBC tTC m ff
Sample-1 70 2 — — 7.3887 3561.50
Sample-2 70 2 0.25 — 9.3513 3993.95
Sample-3 70 2 0.25 0.25 11.5448 4420.77
Sample-4 70 2 0.25 — 9.0475 4061.11
Sample-5 70 2 0.25 0.25 10.4054 4659.19
Sample-6 70 2 0.25 — 9.3513 3942.52
Sample-7 70 2 0.25 0.25 11.5448 3701.82
Sample-8 70 2 0.25 — 9.0475 4008.81
Sample-9 70 2 0.25 0.25 10.4054 3901.57

[mm] [mm] [mm] [mm] [g] [Hz]

Table D.2: The material properties used to model the test samples.

E Mass DensityId.
Sub BC TC Sub BC TC

Sample-1 205 — — 8400 — —
Sample-2 205 204 — 8400 8400 —
Sample-3 205 204 203 8400 8400 8400
Sample-4 205 204 — 8400 7100 —
Sample-5 205 204 203 8400 7100 5200
Sample-6 205 190 — 8400 8400 —
Sample-7 205 190 35 8400 8400 8400
Sample-8 205 190 — 8400 7100 —
Sample-9 205 190 35 8400 7100 5200

[GPa] [GPa] [GPa] [kg/m3] [kg/m3] [kg/m3]

Table D.3: The material properties obtained from the various sample sets.

Substrate Bond Coat Top CoatSamples
Value Error Value Error Value Error

1-2-3 205.2 0.11% 204.2 0.09% 203.2 0.10%
1-4-5 205.2 0.11% 204.4 0.18% 203.8 0.38%
1-6-7 205.2 0.11% 190.2 0.12% 35.7 2.08%
1-8-9 205.2 0.11% 190.4 0.21% 36.1 3.14%

[GPa] [%] [GPa] [%] [GPa] [%]
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results in an error of about 0.1 % on the elastic moduli of the three layers. This
difference is the due to the difference between the results of the ASTM formula
and the FE-models as discribed in the previous section.
The second sample set, i.e. samples 1, 4, and 5, represents the situation where
there is a variation in mass density between the layers, while there is no sig-
nificant variation of the E-modulus. The obtained results show that the ho-
mogenisation of the mass density results in an small but observable increase of
the error on the identified properties.
The third sample set, i.e. samples 1, 6, and 7, represents the situation where
there is a variation in the stiffness between the different layers, while there is
no variation in mass density. The results show that the homogenisation of the
elastic properties leads to a important increase of the error on the identified
properties of the top coat.
The fourth sample set, i.e. samples 1, 8, and 9, represents the real situation
where there is a variation in the both the stiffness and mass density of the layer
materials. The results of table D.3 show that the identification approach of [6]
leads to an significant error on the identified properties of the top coat.

D.3. Conclusions

In the case of the EB-PVD coatings, the homogenisation of the mass density in
the approach of [6] leads to a small but observable error on the identified prop-
erties of the top coat. However, the homogenisation of the elastic properties in
(D.1) leads to a significant overestimation of the stiffness of the top coat. In
general, this overestimation is function of the relative difference in stiffness and
thickness between the various layers. Due to the signification difference in stiff-
ness between the substrate and top coat, it is advisable to use the MNET-based
approach to identify the Young’s moduli of the EB-PVD coatings.
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E
Experimental Results

The appendix presents all the experimental values that were mea-
sured for the experiments that are described in chapter 8
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E.1. Brass-Steel Bi-metal

E.1.1. The Homogeneous Brass Samples
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Table E.2: The properties of the plate-shaped brass samples.

Id. Dir. Length Width Thickness Mass
Bra-21 0-90 104.700 99.710 1.6288 142.3716
Bra-22 0-90 104.724 99.620 1.6284 141.8954
Bra-23 0-90 104.380 99.710 1.6444 143.1856
Bra-24 0-90 103.962 99.200 1.6444 141.4260

[◦] [mm] [mm] [mm] [g]

Table E.3: The layer thicknesses of the plate-shaped brass samples.

Id. Total Top Bottom Glue
Bra-21 1.6288 0.8111 0.8105 0.0072
Bra-22 1.6284 0.8100 0.8127 0.0057
Bra-23 1.6444 0.8179 0.8180 0.0086
Bra-24 1.6444 0.8160 0.8159 0.0125

[mm] [mm] [mm] [mm]

Table E.4: The resonant frequencies of the plate-shaped brass samples.

Id. ftors fsadd fbrea ftf−x ftf−y

Bra-21 343.460 509.847 662.912 889.568 915.469
Bra-22 344.787 512.235 663.559 891.518 917.276
Bra-23 347.646 519.744 670.407 900.096 924.031
Bra-24 350.077 524.002 674.082 906.139 928.355

[Hz] [Hz] [Hz] [Hz] [Hz]

Table E.5: The size of the converged FE-models in terms of elements.

ThicknessLength Width
Top Bottom Glue

Beam 19 14 1 1 1
Plate 23 23 1 1 1
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Elastic Properties

Table E.6: The elastic properties of the beam-shaped brass samples.

Id. Dir. E G ν
Bra-01 0.0 107.17 37.33 0.435
Bra-02 0.0 106.64 36.80 0.449
Bra-03 0.0 107.02 37.17 0.439
Bra-04 0.0 106.68 36.96 0.443
Bra-05 22.5 105.78 38.10 0.388
Bra-06 22.5 105.19 38.21 0.377
Bra-07 22.5 105.33 37.93 0.388
Bra-08 22.5 105.18 37.56 0.400
Bra-09 45.0 102.33 38.97 0.313
Bra-10 45.0 102.27 38.68 0.322
Bra-11 45.0 102.26 38.58 0.325
Bra-12 45.0 102.16 38.86 0.315
Bra-13 67.5 101.57 38.47 0.320
Bra-14 67.5 101.29 37.74 0.342
Bra-15 67.5 101.57 38.30 0.326
Bra-16 67.5 101.34 38.57 0.314
Bra-17 90.0 101.32 37.56 0.349
Bra-18 90.0 101.65 38.01 0.337
Bra-19 90.0 101.62 37.34 0.361
Bra-20 90.0 101.85 37.59 0.355

[◦] [GPa] [GPa] [–]

Table E.7: The averages of the elastic properties of the beam-shaped brass
samples.

Dir. E G ν
0.0 106.88 37.07 0.442

22.5 105.37 37.95 0.388
45.0 102.26 38.77 0.318
67.5 101.44 38.27 0.326
90.0 101.61 37.51 0.350
[◦] [GPa] [GPa] [–]
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Table E.8: The elastic properties of the multi-orientation routine and the
plate-shaped brass samples.

Id. E1 E2 G12 ν12

Multi-orientation 107.38 101.75 37.41 0.358
Bra-21 106.30 101.88 37.36 0.355
Bra-22 106.99 101.87 37.44 0.352
Bra-23 107.09 102.31 37.16 0.349
Bra-24 107.12 100.78 36.88 0.350
Average PS 106.88 101.71 37.21 0.351

[GPa] [GPa] [GPa] [–]

Frequency residuals

Table E.9: The numerical frequencies and frequency residuals of the multi-
orientation routine, brass beams.

Flexural Torsional
Id. fnum Resid. fnum Resid.
Bra-01 561.994 0.02 % 1653.984 −0.08 %
Bra-02 561.159 −0.20 % 1664.220 −0.78 %
Bra-03 577.817 −0.06 % 1804.746 −0.29 %
Bra-04 563.232 −0.20 % 1662.794 −0.57 %
Bra-05 563.783 0.30 % 1681.681 0.05 %
Bra-06 566.511 0.01 % 1696.793 0.18 %
Bra-07 565.735 0.09 % 1690.495 −0.17 %
Bra-08 566.944 0.04 % 1683.514 −0.66 %
Bra-09 566.631 0.07 % 1721.509 0.30 %
Bra-10 574.612 0.06 % 1738.320 −0.06 %
Bra-11 573.042 0.06 % 1734.516 −0.20 %
Bra-12 576.438 0.00 % 1734.115 0.15 %
Bra-13 577.998 0.07 % 1713.183 0.53 %
Bra-14 575.173 −0.04 % 1709.471 −0.41 %
Bra-15 576.746 0.08 % 1722.466 0.30 %
Bra-16 580.549 −0.05 % 1722.557 0.64 %
Bra-17 597.723 −0.20 % 1736.577 0.18 %
Bra-18 593.514 −0.05 % 1728.147 0.76 %
Bra-19 593.292 −0.04 % 1738.178 −0.10 %
Bra-20 588.576 0.07 % 1717.139 0.24 %

[Hz] [–] [Hz] [–]



254 E.1. BRASS-STEEL BI-METAL

E.1.2. The Homogeneous Steel Samples

Sample Description
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Table E.11: The properties of the plate-shaped steel samples.

Id. Dir. Length Width Thickness Mass
Ste-21 0-90 104.534 99.486 0.9814 79.6138
Ste-22 0-90 104.322 99.312 0.9799 78.9813
Ste-23 0-90 104.398 99.356 0.9793 78.9116
Ste-24 0-90 104.484 99.452 0.9769 79.1744

[◦] [mm] [mm] [mm] [g]

Table E.12: The layer thicknesses of the plate-shaped steel samples.

Id. Total Top Bottom Glue
Ste-21 0.9814 0.4854 0.4861 0.0099
Ste-22 0.9799 0.4841 0.4832 0.0126
Ste-23 0.9793 0.4833 0.4837 0.0123
Ste-24 0.9769 0.4847 0.4824 0.0098

[mm] [mm] [mm] [mm]

Table E.13: The resonant frequencies of the plate-shaped steel samples.

Id. ftors fsadd fbrea ftf−x ftf−y

Ste-21 300.2370 449.4820 559.0890 770.1840 799.3570
Ste-22 297.2700 447.9140 562.3480 768.2300 797.8210
Ste-23 300.9090 450.6130 556.4430 771.3450 800.9190
Ste-24 299.5370 447.8440 564.3280 768.5160 797.9280

[Hz] [Hz] [Hz] [Hz] [Hz]

Table E.14: The size of the converged FE-models in terms of elements.

ThicknessLength Width
Top Bottom Glue

Beam 21 16 1 1 1
Plate 23 23 1 1 1
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Elastic Properties

Table E.15: The elastic properties of the beam-shaped steel samples.

Id. Dir. E G ν
Ste-01 0.0 201.03 72.96 0.378
Ste-02 0.0 201.85 72.81 0.386
Ste-03 0.0 200.99 72.65 0.383
Ste-04 0.0 201.88 72.69 0.389
Ste-05 22.5 196.89 75.06 0.312
Ste-06 22.5 197.23 75.20 0.311
Ste-07 22.5 197.80 75.21 0.315
Ste-08 22.5 196.05 75.35 0.301
Ste-09 45.0 192.76 79.25 0.216
Ste-10 45.0 192.52 79.90 0.205
Ste-11 45.0 192.22 79.97 0.202
Ste-12 45.0 191.84 78.28 0.225
Ste-13 67.5 197.50 77.29 0.278
Ste-14 67.5 196.65 75.98 0.294
Ste-15 67.5 196.36 75.56 0.299
Ste-16 67.5 196.22 75.82 0.294
Ste-17 90.0 200.55 72.25 0.388
Ste-18 90.0 201.68 72.61 0.389
Ste-19 90.0 201.01 72.96 0.378
Ste-20 90.0 200.45 73.28 0.368

[◦] [GPa] [GPa] [–]

Table E.16: The averages of the elastic properties of the beam-shaped steel
samples.

Dir. E G ν
0.0 201.44 72.78 0.384

22.5 196.99 75.20 0.310
45.0 192.33 79.35 0.212
67.5 196.68 76.16 0.291
90.0 200.92 72.78 0.380
[◦] [GPa] [GPa] [–]
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Table E.17: The elastic properties of the multi-orientation routine and the
plate-shaped steel samples.

Id. E1 E2 G12 ν12

Multi-orientation 202.28 201.82 72.82 0.279
Ste-21 201.43 200.68 72.55 0.276
Ste-22 199.68 199.80 70.87 0.288
Ste-23 200.42 200.24 72.73 0.264
Ste-24 202.72 202.30 72.49 0.294
Average PS 201.06 200.75 72.16 0.280

[GPa] [GPa] [GPa] [–]

Frequency residuals

Table E.18: The numerical frequencies and frequency residuals of the multi-
orientation routine, steel beams.

Flexural Torsional
Id. fnum Resid. fnum Resid.
Ste-01 479.041 −0.17 % 1450.252 0.12 %
Ste-02 477.735 0.04 % 1444.761 0.03 %
Ste-03 481.149 −0.18 % 1463.646 −0.08 %
Ste-04 490.254 0.04 % 1566.699 −0.05 %
Ste-05 482.563 0.03 % 1504.680 −0.50 %
Ste-06 479.137 0.12 % 1495.306 −0.41 %
Ste-07 478.125 0.27 % 1492.225 −0.40 %
Ste-08 480.512 −0.19 % 1498.842 −0.33 %
Ste-09 481.996 0.18 % 1533.665 0.15 %
Ste-10 489.933 0.11 % 1546.181 0.53 %
Ste-11 492.679 0.03 % 1552.459 0.57 %
Ste-12 480.077 −0.06 % 1533.619 −0.45 %
Ste-13 500.180 0.22 % 1519.854 0.92 %
Ste-14 499.932 0.03 % 1521.986 0.08 %
Ste-15 499.460 −0.04 % 1522.551 −0.18 %
Ste-16 499.682 −0.08 % 1520.846 −0.02 %
Ste-17 517.272 −0.15 % 1517.004 −0.34 %
Ste-18 522.025 0.12 % 1525.279 −0.10 %
Ste-19 522.395 −0.06 % 1531.639 0.13 %
Ste-20 529.452 −0.22 % 1533.086 0.33 %

[Hz] [–] [Hz] [–]
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E.1.3. The Brass-Steel Bi-Metal Samples
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Table E.23: The properties of the plate-shaped brass-steel samples.

Id. Dir. Length Width Thickness Mass
BSB-31 0-90 104.508 99.534 1.3129 110.9973
BSB-32 0-90 104.500 99.534 1.3133 111.2240
BSB-33 0-90 104.530 99.610 1.3111 111.1373
BSB-34 0-90 104.598 99.506 1.3076 110.8261
BSB-35 0-90 104.584 99.458 1.3206 111.4791
BSB-36 0-90 104.284 99.564 1.3112 110.7103

[◦] [mm] [mm] [mm] [g]

Table E.24: The layer thicknesses of the plate-shaped brass-steel samples.

Id. Total Brass Steel Glue
BSB-31 1.3129 0.8178 0.4837 0.0114
BSB-32 1.3133 0.8187 0.4861 0.0085
BSB-33 1.3111 0.8168 0.4862 0.0081
BSB-34 1.3076 0.8163 0.4834 0.0078
BSB-35 1.3206 0.8220 0.4844 0.0143
BSB-36 1.3112 0.8156 0.4850 0.0106

[mm] [mm] [mm] [mm]

Table E.25: The resonant frequencies of the plate-shaped brass-steel samples.

Id. ftors fsadd fbrea ftf−x ftf−y

BSB-31 328.078 490.103 622.872 846.960 872.926
BSB-32 327.550 488.722 624.085 847.083 874.330
BSB-33 326.528 488.206 623.448 845.138 870.869
BSB-34 326.742 488.359 621.502 841.226 869.563
BSB-35 330.199 492.561 627.461 851.222 878.882
BSB-36 328.326 490.712 621.602 845.669 871.959

[Hz] [Hz] [Hz] [Hz] [Hz]

Table E.26: The size of the converged FE-models in terms of elements, brass-
steel samples.

ThicknessLength Width
Brass Steel Glue

Beam 19 15 1 1 1
Plate 23 23 2 1 1
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Table E.27: The properties of the modified plate-shaped brass-steel samples.

Id. Dir. Length Width Thickness Mass Glass id.
BSB-31a 0-90 104.488 99.468 2.0447 129.1790 Gla-0.7-43
BSB-32a 0-90 104.426 99.440 2.0412 129.3863 Gla-0.7-45
BSB-33a 0-90 104.378 99.466 2.0308 129.0584 Gla-0.7-44
BSB-34a 0-90 104.472 99.436 2.0321 128.9519 Gla-0.7-46
BSB-35a 0-90 104.480 99.356 1.9121 126.3886 Gla-0.6-1
BSB-36a 0-90 104.178 99.444 1.9098 125.4250 Gla-0.6-2

[◦] [mm] [mm] [mm] [g]

Table E.28: The layer thicknesses of the modified plate-shaped brass-steel
samples.

Id. Total BSB Glass Glue
BSB-31a 2.0447 1.3129 0.6828 0.0491
BSB-32a 2.0412 1.3133 0.6799 0.0480
BSB-33a 2.0308 1.3111 0.6816 0.0380
BSB-34a 2.0321 1.3076 0.6852 0.0394
BSB-35a 1.9121 1.3206 0.5542 0.0372
BSB-36a 1.9098 1.3112 0.5526 0.0460

[mm] [mm] [mm] [mm]

Table E.29: The resonant frequencies of the modified plate-shaped brass-steel
samples.

Id. ftors fsadd fbrea ftf−x ftf−y

BSB-31a 542.023 800.541 978.339 1373.869 1421.772
BSB-32a 547.426 808.329 989.379 1379.367 1427.491
BSB-33a 477.700 702.003 877.726 1213.998 1251.972
BSB-34a 479.115 702.776 879.790 1214.798 1255.850
BSB-35a 507.295 747.138 920.974 1276.620 1323.231
BSB-36a 445.863 655.762 816.301 1133.727 1168.103

[Hz] [Hz] [Hz] [Hz] [Hz]

Table E.30: The size of the converged FE-models in terms of elements, mod-
ified brass-steel samples.

ThicknessLength Width
Brass Steel Glass E-32 B-682

Beam 17 12 1 1 1 1 1
Plate 23 23 1 1 1 1 1
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Elastic Properties

Table E.31: The elastic properties of the beam-shaped brass-steel samples,
identification with the properties of one layer fixed to the refer-
ence properties.

Brass SteelId. Dir.
E G ν E G ν

BSB-01 0.0 107.82 37.32 0.444 203.88 73.49 0.387
BSB-02 0.0 107.67 37.93 0.419 203.27 75.18 0.352
BSB-03 0.0 107.86 37.83 0.425 203.81 74.92 0.360
BSB-04 0.0 107.81 36.84 0.463 204.02 72.15 0.414
BSB-05 0.0 106.30 38.46 0.382 199.35 76.67 0.300
BSB-06 0.0 106.48 37.36 0.425 200.27 73.61 0.360
BSB-07 22.5 106.79 37.97 0.406 200.81 75.25 0.334
BSB-08 22.5 106.00 38.55 0.375 198.42 76.91 0.290
BSB-09 22.5 107.39 39.14 0.372 201.93 78.58 0.285
BSB-10 22.5 105.34 38.09 0.383 196.84 75.61 0.302
BSB-11 22.5 105.60 36.71 0.438 198.09 71.75 0.380
BSB-12 22.5 104.75 38.09 0.375 195.27 75.60 0.291
BSB-13 45.0 101.44 38.71 0.310 190.16 79.15 0.201
BSB-14 45.0 102.02 38.78 0.315 191.69 79.38 0.207
BSB-15 45.0 101.21 38.25 0.323 189.75 77.81 0.219
BSB-16 45.0 102.88 38.88 0.323 194.00 79.68 0.217
BSB-17 45.0 100.06 33.86 0.478 188.37 65.47 0.439
BSB-18 45.0 101.40 35.33 0.435 191.47 69.49 0.378
BSB-19 67.5 100.71 38.12 0.321 194.71 75.74 0.285
BSB-20 67.5 101.38 38.42 0.319 196.48 76.60 0.283
BSB-21 67.5 101.68 38.37 0.325 197.32 76.45 0.291
BSB-22 67.5 100.43 38.24 0.313 193.93 76.09 0.274
BSB-23 67.5 100.77 38.18 0.320 194.86 75.91 0.283
BSB-24 67.5 101.33 37.89 0.337 196.42 75.11 0.307
BSB-25 90.0 101.54 37.57 0.351 200.71 72.62 0.382
BSB-26 90.0 102.06 37.70 0.353 202.14 72.99 0.385
BSB-27 90.0 102.66 37.90 0.354 203.80 73.53 0.386
BSB-28 90.0 102.22 36.74 0.391 202.31 70.40 0.437
BSB-29 90.0 99.37 33.12 0.500 188.83 62.94 0.500
BSB-30 90.0 102.12 37.56 0.359 202.29 72.60 0.393

[◦] [GPa] [GPa] [–] [GPa] [GPa] [–]
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Table E.32: The elastic properties of the beam-shaped brass-steel samples,
identification using the initial and modified layer configurations.

Brass SteelId. Dir.
E G ν E G ν

BSB-01 0.0 107.49 37.10 0.449 202.23 73.39 0.378
BSB-02 0.0 109.88 41.06 0.338 195.12 65.47 0.490
BSB-03 0.0 107.65 37.31 0.443 201.42 71.61 0.406
BSB-04 0.0 106.37 37.17 0.431 205.38 71.87 0.429
BSB-05 0.0 105.99 36.60 0.448 201.45 78.08 0.290
BSB-06 0.0 102.75 34.25 0.500 210.44 82.57 0.274
BSB-07 22.5 104.95 37.65 0.394 201.87 76.10 0.326
BSB-08 22.5 104.74 37.67 0.390 200.03 77.71 0.287
BSB-09 22.5 106.68 39.23 0.360 198.85 74.97 0.326
BSB-10 22.5 105.55 38.43 0.373 196.54 74.29 0.323
BSB-11 22.5 105.97 39.59 0.338 196.14 67.76 0.447
BSB-12 22.5 105.75 36.39 0.453 192.65 80.37 0.198
BSB-13 45.0 102.13 38.73 0.319 190.46 79.29 0.201
BSB-14 45.0 100.58 37.98 0.324 195.98 81.81 0.198
BSB-15 45.0 104.36 39.93 0.307 184.81 74.66 0.238
BSB-16 45.0 103.56 37.57 0.378 189.29 83.46 0.134
BSB-17 45.0 101.13 37.12 0.362 191.66 69.39 0.381
BSB-18 45.0 101.21 34.76 0.456 192.01 81.34 0.180
BSB-19 67.5 98.82 37.03 0.334 201.90 79.41 0.271
BSB-20 67.5 100.04 38.57 0.297 200.37 75.75 0.323
BSB-21 67.5 101.80 38.79 0.312 196.40 74.99 0.310
BSB-22 67.5 102.02 39.19 0.302 192.51 73.60 0.308
BSB-23 67.5 100.00 37.64 0.328 198.74 77.72 0.279
BSB-24 67.5 102.08 38.21 0.336 194.68 75.27 0.293
BSB-25 90.0 100.28 36.40 0.377 204.48 76.12 0.343
BSB-26 90.0 102.25 37.04 0.380 200.39 74.61 0.343
BSB-27 90.0 102.84 38.24 0.345 200.36 71.88 0.394
BSB-28 90.0 100.99 37.08 0.362 204.20 71.84 0.421
BSB-29 90.0 104.86 35.46 0.478 191.91 63.97 0.500
BSB-30 90.0 102.75 38.42 0.337 199.04 70.54 0.411

[◦] [GPa] [GPa] [–] [GPa] [GPa] [–]
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Table E.33: The average elastic properties of the beam-shaped brass-steel
samples, identification with the properties of one layer fixed to
the reference properties.

Brass SteelDir.
E G ν E G ν

0.0 107.32 37.62 0.427 202.43 74.34 0.362
22.5 105.98 38.09 0.391 198.56 75.62 0.314
45.0 101.50 38.65 0.318 190.91 79.01 0.211
67.5 101.05 38.20 0.323 195.62 75.98 0.287
90.0 101.66 37.50 0.362 202.25 72.43 0.397
[◦] [GPa] [GPa] [–] [GPa] [GPa] [–]

Table E.34: The elastic properties of the beam-shaped brass-steel samples,
identification using the initial and modified layer configurations.

Brass SteelDir.
E G ν E G ν

0.0 107.48 37.05 0.422 202.67 72.29 0.378
22.5 105.60 38.16 0.385 197.68 76.69 0.318
45.0 102.16 38.27 0.358 190.70 80.11 0.222
67.5 100.79 38.24 0.318 197.43 76.12 0.297
90.0 102.33 37.11 0.380 201.69 73.00 0.382
[◦] [GPa] [GPa] [–] [GPa] [GPa] [–]

Table E.35: The elastic properties of the multi-orientation routines.

Brass
Id. E1 E2 G12 ν12

Steel props. fixed 107.68 101.59 37.53 0.359
All frequencies 107.20 101.31 37.51 0.372
Selected frequencies 107.52 101.62 37.36 0.366

[GPa] [GPa] [GPa] [–]
Steel

Id. E1 E2 G12 ν12

Brass props. fixed 203.04 201.36 73.14 0.280
All frequencies 202.71 202.11 72.00 0.300
Selected frequencies 203.22 202.78 73.18 0.270

[GPa] [GPa] [GPa] [–]
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Table E.36: The elastic properties of the plate-shaped samples, identification
with the properties of one layer fixed to the reference properties.

Brass
Id. E1 E2 G12 ν12

BSB-31 107.37 101.01 37.40 0.352
BSB-32 106.40 101.68 37.34 0.357
BSB-33 107.49 101.38 37.17 0.363
BSB-34 107.42 102.69 37.35 0.347
BSB-35 106.80 101.08 37.41 0.353
BSB-36 106.23 101.85 37.32 0.341

[GPa] [GPa] [GPa] [–]
Steel

Id. E1 E2 G12 ν12

BSB-31 202.33 198.82 72.67 0.281
BSB-32 199.94 200.72 72.50 0.289
BSB-33 202.77 199.92 72.06 0.297
BSB-34 202.40 203.44 72.54 0.274
BSB-35 200.91 199.02 72.68 0.283
BSB-36 199.29 201.07 72.45 0.266

[GPa] [GPa] [GPa] [–]

Table E.37: The elastic properties of the plate-shaped samples, identification
using the initial and modified layer configurations.

Brass
Id. E1 E2 G12 ν12

BSB-31 102.14 97.26 35.96 0.348
BSB-32 97.00 94.84 34.78 0.343
BSB-33 112.45 105.89 38.95 0.384
BSB-34 112.73 108.75 39.55 0.367
BSB-35 95.97 92.39 35.24 0.331
BSB-36 111.38 105.01 38.52 0.357

[GPa] [GPa] [GPa] [–]
Steel

Id. E1 E2 G12 ν12

BSB-31 215.60 211.94 76.28 0.284
BSB-32 230.00 222.30 79.96 0.297
BSB-33 189.11 188.92 67.76 0.256
BSB-34 188.41 185.67 66.83 0.256
BSB-35 235.07 229.46 78.60 0.309
BSB-36 188.67 192.46 69.10 0.262

[GPa] [GPa] [GPa] [–]
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Frequency residuals

Table E.38: The frequency residuals and the new weighting coefficients of the
multi-orientation routine.

Frequency residuals New wi coefficients
Id. Dir. Initial Modified Initial Modified

ff ft ff ft ff ft ff ft

BSB-01 0.0 0.15 0.11 0.21 0.34 1.0 1.0 1.0 2.0
BSB-02 0.0 0.09 0.57 −0.30 −1.45 1.0 1.0 1.0 0.0
BSB-03 0.0 0.14 0.50 0.47 0.23 1.0 1.0 1.0 2.0
BSB-04 0.0 0.18 −0.26 0.13 −0.21 1.0 1.0 1.0 2.0
BSB-05 0.0 −0.33 0.92 −0.03 1.41 1.0 1.0 1.0 0.0
BSB-06 0.0 −0.23 0.14 −0.39 −1.96 1.0 1.0 1.0 0.0
BSB-07 22.5 0.35 0.16 0.46 0.30 1.0 1.0 1.0 1.2
BSB-08 22.5 0.09 0.58 0.23 0.69 1.0 1.0 1.0 1.2
BSB-09 22.5 0.46 1.01 0.27 0.85 1.0 1.0 1.0 1.2
BSB-10 22.5 −0.08 0.24 0.00 0.34 1.0 1.0 1.0 1.2
BSB-11 22.5 0.08 −0.81 0.10 −1.70 1.0 1.0 1.0 0.0
BSB-12 22.5 −0.25 0.24 0.07 −0.73 1.0 1.0 1.0 1.2
BSB-13 45.0 −0.43 0.68 −0.35 0.39 1.0 1.5 1.0 1.5
BSB-14 45.0 −0.27 0.75 0.17 0.91 1.0 1.5 1.0 1.5
BSB-15 45.0 −0.49 0.34 0.13 0.92 1.0 1.5 1.0 1.5
BSB-16 45.0 −0.02 0.83 0.15 −0.32 1.0 1.5 1.0 1.5
BSB-17 45.0 −0.51 −3.22 −0.09 −2.39 1.0 0.0 1.0 0.0
BSB-18 45.0 −0.23 −1.95 −0.27 −2.28 1.0 0.0 1.0 0.0
BSB-19 67.5 −0.29 0.52 0.32 1.02 1.0 1.0 1.0 1.0
BSB-20 67.5 −0.10 0.75 0.24 0.31 1.0 1.0 1.0 1.0
BSB-21 67.5 −0.01 0.71 −0.01 0.58 1.0 1.0 1.0 1.0
BSB-22 67.5 −0.38 0.61 −0.02 0.76 1.0 1.0 1.0 1.0
BSB-23 67.5 −0.27 0.56 0.02 0.69 1.0 1.0 1.0 1.0
BSB-24 67.5 −0.10 0.36 0.05 0.25 1.0 1.0 1.0 1.0
BSB-25 90.0 −0.02 0.27 0.27 0.94 1.0 1.2 1.0 1.2
BSB-26 90.0 0.14 0.38 −0.05 0.63 1.0 1.2 1.0 1.2
BSB-27 90.0 0.31 0.53 0.41 0.47 1.0 1.2 1.0 1.2
BSB-28 90.0 0.21 −0.34 0.08 −0.28 1.0 1.2 1.0 1.2
BSB-29 90.0 0.06 −3.91 0.16 −2.99 1.0 0.0 1.0 0.0
BSB-30 90.0 0.16 0.27 0.41 0.53 1.0 1.2 1.0 1.2

[◦] [%] [%] [%] [%] [–] [–] [–] [–]
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E.1.4. The Glass Samples

Sample Description

Table E.39: The properties of the beam-shaped glass samples.

Id Length Width Thick. Mass ff ft

Gla-0.6-01 102.660 18.768 0.5533 2.6599 288.914 981.361
Gla-0.6-02 103.900 19.984 0.5534 2.8615 282.718 913.552
Gla-0.6-03 103.220 20.242 0.5547 2.8800 286.643 911.515
Gla-0.6-04 103.345 20.114 0.5532 2.8659 285.913 913.270
Gla-0.6-05 102.085 19.746 0.5538 2.7819 293.054 940.368
Gla-0.6-06 102.085 19.748 0.5534 2.8136 291.051 933.248
Gla-0.6-07 101.370 20.056 0.5534 2.8031 297.428 932.852
Gla-0.6-08 101.100 19.920 0.5539 2.7742 299.235 944.464
Gla-0.6-09 100.245 20.296 0.5544 2.8050 304.047 931.703
Gla-0.6-10 99.920 19.996 0.5564 2.7548 307.304 957.090

[mm] [mm] [mm] [g] [Hz] [Hz]

Table E.40: The properties of the beam-shaped glass samples.

Id Length Width Thick. Mass ff ft

Gla-0.7-01 104.055 19.958 0.6844 3.5204 348.208 1125.291
Gla-0.7-02 102.865 19.404 0.6809 3.3666 354.170 1165.906
Gla-0.7-03 104.025 20.376 0.6831 3.5810 347.449 1105.188
Gla-0.7-04 104.295 19.940 0.6865 3.5311 348.091 1127.851
Gla-0.7-05 102.980 19.810 0.6855 3.4589 356.177 1145.837
Gla-0.7-06 103.055 20.418 0.6824 3.5529 355.094 1113.375
Gla-0.7-07 102.790 20.820 0.6824 3.6123 356.422 1093.550
Gla-0.7-08 102.875 20.084 0.6835 3.5038 355.636 1129.024
Gla-0.7-09 101.925 20.060 0.6827 3.4620 363.771 1146.705
Gla-0.7-10 101.865 20.674 0.6811 3.5627 362.638 1108.119
Gla-0.7-11 102.105 20.148 0.6836 3.4790 361.013 1135.560
Gla-0.7-12 102.040 20.644 0.6798 3.5537 360.390 1108.105
Gla-0.7-13 101.170 20.352 0.6830 3.4860 367.538 1133.340
Gla-0.7-14 101.260 20.432 0.6800 3.4875 366.303 1128.086
Gla-0.7-15 100.995 20.562 0.6813 3.5071 368.360 1124.724
Gla-0.7-16 101.085 20.030 0.6832 3.4292 368.459 1154.211
Gla-0.7-17 100.210 20.020 0.6843 3.3920 375.972 1164.219
Gla-0.7-18 100.515 19.958 0.6818 3.3895 371.663 1165.414
Gla-0.7-19 100.010 20.290 0.6849 3.4457 377.289 1150.750
Gla-0.7-20 100.295 20.608 0.6827 3.4968 374.123 1131.992

[mm] [mm] [mm] [g] [Hz] [Hz]
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Table E.41: The properties of the plate-shaped glass samples.

Id. Dir. Length Width Thickness Mass
Gla-0.6-11 0-90 104.697 99.845 0.5542 14.4091
Gla-0.6-12 0-90 104.963 99.755 0.5526 14.4259
Gla-0.7-21 0-90 105.750 100.150 0.6828 17.9866
Gla-0.7-22 0-90 105.723 100.365 0.6799 17.9159
Gla-0.7-23 0-90 105.670 100.025 0.6816 17.9179
Gla-0.7-24 0-90 105.263 100.247 0.6852 17.9711

[◦] [mm] [mm] [mm] [g]

Table E.42: The resonant frequencies of the plate-shaped glass samples.

Id. ftors fsadd fbrea ftf−x ftf−y

Gla-0.6-11 189.787 268.800 322.340 474.020 490.541
Gla-0.6-12 187.812 266.836 321.034 470.906 488.801
Gla-0.7-21 228.436 325.690 393.055 571.094 593.442
Gla-0.7-22 227.187 325.144 391.827 568.731 590.638
Gla-0.7-23 228.458 326.386 392.158 571.099 594.621
Gla-0.7-24 229.362 328.391 393.741 575.912 596.080

[Hz] [Hz] [Hz] [Hz] [Hz]

Table E.43: The size of the converged FE-model in terms of elements.

Length Width Thickness
Beam 0.6 mm 23 22 3
Beam 0.7 mm 22 21 3
Plate 0.6mm 21 21 1
Plate 0.7mm 21 22 1
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Elastic Properties

Table E.44: The elastic properties of the beam-shaped glass samples.

Id. E G ν
Gla-0.6-01 71.26 29.26 0.218
Gla-0.6-02 71.41 29.30 0.218
Gla-0.6-03 71.02 29.32 0.211
Gla-0.6-04 71.59 29.38 0.218
Gla-0.6-05 71.45 29.24 0.222
Gla-0.6-06 71.67 29.30 0.223
Gla-0.6-07 71.63 29.28 0.223
Gla-0.6-08 71.49 29.36 0.218
Gla-0.6-09 71.19 29.07 0.225
Gla-0.6-10 71.04 29.29 0.213

[GPa] [GPa] [–]

Table E.45: The elastic properties of the beam-shaped glass samples.

Id. E G ν
Gla-0.7-01 70.87 29.06 0.219
Gla-0.7-02 70.76 29.15 0.214
Gla-0.7-03 70.66 29.26 0.208
Gla-0.7-04 70.94 29.06 0.221
Gla-0.7-05 70.80 28.95 0.223
Gla-0.7-06 71.25 29.31 0.216
Gla-0.7-07 71.02 29.20 0.216
Gla-0.7-08 70.93 29.06 0.220
Gla-0.7-09 71.65 29.41 0.218
Gla-0.7-10 71.47 29.27 0.221
Gla-0.7-11 70.70 29.05 0.217
Gla-0.7-12 71.29 29.38 0.213
Gla-0.7-13 70.89 29.07 0.219
Gla-0.7-14 71.30 29.33 0.216
Gla-0.7-15 71.08 29.25 0.215
Gla-0.7-16 70.98 29.16 0.217
Gla-0.7-17 70.90 28.93 0.225
Gla-0.7-18 70.88 29.30 0.210
Gla-0.7-19 71.13 29.02 0.226
Gla-0.7-20 70.99 29.22 0.215

[GPa] [GPa] [–]
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Table E.46: The elastic properties of the plate-shaped glass samples.

Id. E1 E2 G12 ν12

Gla-0.6-11 70.70 70.88 29.40 0.218
Gla-0.6-12 70.72 71.09 29.25 0.216
Gla-0.7-21 70.88 70.55 28.76 0.220
Gla-0.7-22 71.11 71.17 28.73 0.219
Gla-0.7-23 70.75 71.01 28.80 0.207
Gla-0.7-24 70.58 70.28 28.64 0.220

[GPa] [GPa] [GPa] [–]

E.2. Carbon-Epoxy Composite

E.2.1. The Carbon-Epoxy Specimens

Sample Description

Table E.47: The properties of the carbon-epoxy samples.

Id. Dir. Length Width Thickness Mass
PCE-01 0–90 157.945 104.035 1.8419 43.5439
PCE-02 0–90 151.020 104.035 1.8419 41.6458
PCE-03 0–90 — — 1.8541 —
PCE-03a 0–90 156.417 149.463 3.9371 183.8965

[◦] [mm] [mm] [mm] [mm]

Table E.48: The layer thicknesses, after correction for the peel ply imprint.

Id. Total Skin Core Skin Glue Glass
PCE-01 1.7676 — — — — —
PCE-02 1.7676 0.4419 0.8838 0.4419 — —
PCE-03 1.7799 0.4450 0.8899 0.4450 — —
PCE-03a 3.9000 0.4450 0.8899 0.4450 0.0454 2.0747

[mm] [mm] [mm] [mm] [mm] [mm]
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Table E.49: The resonant frequencies of the first five vibration modes.

Id. ftors fsadd fbrea ftf−x ftf−y

PCE-01 188.49 572.07 626.76 689.12 730.01
PCE-02 196.63 614.06 638.36 738.72 743.81
PCE-03 — — — — —
PCE-03a 388.83 917.89 1010.04 1224.54 1251.06

[Hz] [Hz] [Hz] [Hz] [Hz]

Table E.50: The size of the converged FE-models in terms of elements.

ThicknessId. Length Width
Skin Core Skin Glue Glass

PCE-01 20 17 1 1 1 — —
PCE-02 20 17 1 1 1 — —
PCE-03a 19 18 1 1 1 1 1

Elastic Properties

Table E.51: The elastic properties of the carbon-epoxy samples.

Id. E1 E2 G12 ν12 Remarks
PCE-01 82.85 18.31 3.53 0.129 Homogeneous
PCE-02 103.76 9.30 3.99 0.260 Layered
PCE-03a 67.22 60.25 9.82 0.136 Homogeneous

103.68 9.36 3.99 0.259 Layered – SkinPCE-02/03a
9.92 103.38 3.97 0.024 Layered – Core

[GPa] [GPa] [GPa] [–]
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E.2.2. Glass Specimens

Sample Description

Table E.52: The properties of the glass sample.

Id. Dir. Length Width Thickness Mass
Gla-2.0-01 0–90 156.227 149.670 2.0747 121.1915

[◦] [mm] [mm] [mm] [mm]

Table E.53: The resonant frequencies of the first five vibration modes.

Id. ftors fsadd fbrea ftf−x ftf−y

Gla-2.0-01 315.40 452.95 540.89 791.13 815.65
[Hz] [Hz] [Hz] [Hz] [Hz]

Table E.54: The size of the converged FE-model in terms of elements.

Id. Length Width Thickness
Gla-2.0-01 23 23 3

Elastic Properties

Table E.55: The elastic properties of the glass sample.

Id. E1 E2 G12 ν12

Gla-2.0-01 71.96 71.81 29.24 0.222
[GPa] [GPa] [GPa] [–]
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E.3. Air Plasma Sprayed Coatings

E.3.1. The Initial Plate-Shaped Specimens

Sample Description

Table E.56: The properties of the initial plate-shaped samples.

ThicknessId. Length Width
Total Substr. Coating

Mass

ACS-01 145.424 150.264 1.9350 1.9350 — 331.121
ACB-01 145.340 150.438 2.1999 1.9350 0.2649 357.429
ACB-11 145.878 150.636 2.5236 1.9350 0.5886 401.881
ACT-01 145.394 150.160 2.1649 1.9350 0.2299 351.079
ACT-11 145.732 150.734 2.5829 1.9350 0.6479 400.066

[mm] [mm] [mm] [mm] [mm] [g]

Table E.57: The resonant frequencies of the initial plate-shaped samples.

Id. ftors fsadd fbrea ftf−x ftf−y

ACS-01 291.503 434.380 515.805 742.459 757.604
ACB-01 285.275 421.653 528.246 730.406 745.609
ACB-11 292.497 433.015 510.626 738.091 757.723
ACT-01 291.482 431.601 526.759 738.784 755.042
ACT-11 295.048 432.387 524.971 744.073 761.861

[Hz] [Hz] [Hz] [Hz] [Hz]

Table E.58: The mesh sizes of the converged FE-models in terms of elements.

ThicknessId. Length Width
Substrate Coating

ACS-01 23 23 3 —
ACB-01 23 23 3 1
ACB-11 23 23 3 1
ACT-01 23 23 3 1
ACT-11 23 23 3 1
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Elastic Properties

Table E.59: The elastic properties of the substrate.

E1 [GPa] E2 [GPa] G12 [GPa] ν12 [–]
ACS-01 203.75 208.66 77.86 0.229
ACS-01/ACB-01 203.79 208.68 77.85 0.229
ACS-01/ACB-11 203.75 208.66 77.85 0.229
ACB-01/ACB-11 193.31 204.00 71.55 0.353
ACS-01/ACT-01 203.75 208.66 77.85 0.229
ACS-01/ACT-11 203.75 208.66 77.85 0.229
ACB-01/ACT-11 206.19 209.95 76.56 0.271

Table E.60: The elastic properties of the bond coat.

E1 [GPa] E2 [GPa] G12 [GPa] ν12 [–]
ACS-01/ACB-01 Err. Err. Err. Err.
ACS-01/ACB-11 30.92 25.27 11.81 0.121
ACB-01/ACB-11 28.38 17.26 16.29 0.043

Table E.61: The elastic properties of the top coat.

E1 [GPa] E2 [GPa] G12 [GPa] ν12 [–]
ACS-01/ACT-01 20.77 19.05 8.30 0.757
ACS-01/ACT-11 26.05 24.69 10.49 0.391
ACB-01/ACT-11 25.07 24.17 11.27 0.187

E.3.2. The Beam-Shaped Specimens

E.3.3. Sample Description

Table E.62: The mesh sizes of the converged FE-models in terms of elements.

ThicknessId. Length Width
Substrate Coating

ASC-beams 14 11 3 —
ACB-Beams, 250µm 14 11 3 1
ACB-Beams, 500µm 14 11 3 1
ACT-Beams, 250µm 14 11 3 1
ACT-Beams, 500µm 14 11 3 1
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Elastic Properties

Table E.66: The elastic properties of the beam-shaped substrate samples.

Id. Dir. E G ν
ACS-02 0.0 201.45 77.63 0.297
ACS-03 0.0 200.05 76.68 0.304
ACS-04 0.0 200.47 76.96 0.302
ACS-05 45.0 196.30 81.11 0.210
ACS-06 45.0 196.18 81.00 0.211
ACS-07 45.0 195.49 80.81 0.210
ACS-08 90.0 204.53 76.70 0.333
ACS-09 90.0 205.15 76.84 0.335
ACS-10 90.0 204.70 76.66 0.335

[◦] [GPa] [GPa] [–]

Table E.67: The averages of the elastic properties of the beam-shaped sub-
strate samples.

Dir. E G ν
0.0 200.66 77.09 0.301

45.0 195.99 80.97 0.210
90.0 204.80 76.73 0.335
[◦] [GPa] [GPa] [–]

Table E.68: The multi-orientation results obtained from the beam-shaped
substrate samples.

E1 E2 G12 ν12

200.85 205.26 76.91 0.246
[GPa] [GPa] [GPa] [–]
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Table E.69: The elastic properties of the beam-shaped samples coated with
250 µm bond coat, approach 1.

Id. Dir. E G ν
ACB-02 0.0 22.19 8.77 0.266
ACB-03 0.0 24.62 9.22 0.336
ACB-04 0.0 21.10 8.44 0.250
ACB-05 45.0 24.26 9.49 0.278
ACB-06 45.0 23.83 9.25 0.288
ACB-07 45.0 22.20 8.21 0.352
ACB-08 90.0 21.79 9.15 0.191
ACB-09 90.0 23.32 9.01 0.295
ACB-10 90.0 24.85 9.34 0.330

[◦] [GPa] [GPa] [–]

Table E.70: The averages of the elastic properties of the beam-shaped sam-
ples coated with 250µm bond coat, approach 1.

Dir. E G ν
0.0 22.64 8.81 0.284

45.0 23.43 8.98 0.306
90.0 23.32 9.17 0.272
[◦] [GPa] [GPa] [–]

Table E.71: The elastic properties of the beam-shaped samples coated with
500 µm bond coat, approach 1.

Id. Dir. E G ν
ACB-12 0.0 26.53 10.96 0.210
ACB-13 0.0 27.78 11.27 0.233
ACB-14 0.0 28.57 11.56 0.236
ACB-15 45.0 28.86 11.29 0.278
ACB-16 45.0 28.94 11.27 0.284
ACB-17 45.0 28.86 11.16 0.293
ACB-18 90.0 28.79 11.74 0.226
ACB-19 90.0 26.85 11.45 0.172
ACB-20 90.0 28.33 11.70 0.210

[◦] [GPa] [GPa] [–]
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Table E.72: The averages of the elastic properties of the beam-shaped sample
coated with 500 µm bond coat, approach 1.

Dir. E G ν
0.0 27.63 11.27 0.226

45.0 28.89 11.24 0.285
90.0 27.99 11.63 0.203
[◦] [GPa] [GPa] [–]

Table E.73: The elastic properties of the beam-shaped bond coat samples,
approach 2.

Substrate Bond coatDir.
E G ν E G ν

0.0 196.45 75.18 0.307 30.48 12.70 0.200
45.0 191.65 79.22 0.210 32.01 12.55 0.275
90.0 200.58 74.66 0.343 30.64 13.19 0.161
[◦] [GPa] [GPa] [–] [GPa] [GPa] [–]

Table E.74: The multi-orientation results obtained from the beam-shaped
bond coat samples, approach 1.

E1 E2 G12 ν12

All 250µmBC Beams 22.83 23.59 9.04 0.287
All 500µmBC Beams 27.94 28.47 11.50 0.256

[GPa] [GPa] [GPa] [–]

Table E.75: The multi-orientation results obtained from the beam-shaped
bond coat samples, approach 2.

E1 E2 G12 ν12

Substrate 196.77 201.24 74.95 0.248
Bond coat 30.79 31.38 12.96 0.240

[GPa] [GPa] [GPa] [–]
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Table E.76: The elastic properties of the beam-shaped samples coated with
250 µm top coat, approach 1.

Id. Dir. E G ν
ACT-02 0.0 23.22 13.25 −0.124
ACT-03 0.0 21.16 10.59 −0.001
ACT-04 0.0 24.04 11.31 0.062
ACT-05 0.0 23.24 12.61 −0.078
ACT-06 45.0 27.79 11.46 0.213
ACT-07 45.0 26.51 13.07 0.014
ACT-08 45.0 24.11 13.15 −0.083
ACT-09 90.0 22.39 12.83 −0.128
ACT-10 90.0 22.18 10.58 0.048

[◦] [GPa] [GPa] [–]

Table E.77: The averages of the elastic properties of the beam-shaped sam-
ples coated with 250µm top coat, approach 1.

Dir. E G ν
0.0 22.80 11.72 −0.021

45.0 25.85 12.38 0.049
90.0 22.90 12.19 −0.054
[◦] [GPa] [GPa] [–]

Table E.78: The elastic properties of the beam-shaped samples coated with
500 µm top coat, approach 1.

Id. Dir. E G ν
ACT-12 0.0 24.91 12.46 −0.001
ACT-13 0.0 24.07 12.31 −0.023
ACT-14 0.0 18.61 19.74 −0.529
ACT-15 45.0 25.24 11.69 0.080
ACT-16 45.0 27.05 12.61 0.072
ACT-17 45.0 26.23 11.97 0.096
ACT-18 90.0 26.05 8.68 0.500
ACT-19 90.0 20.75 11.93 −0.130
ACT-20 90.0 24.14 11.81 0.022

[◦] [GPa] [GPa] [–]
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Table E.79: The averages of the elastic properties of the beam-shaped sam-
ples coated with 500µm top coat, approach 1.

Dir. E G ν
0.0 24.49 12.39 −0.012

45.0 26.17 12.09 0.083
90.0 22.45 11.87 −0.054
[◦] [GPa] [GPa] [–]

Table E.80: The elastic properties of the beam-shaped top coat samples, ap-
proach 2.

Substrate TCDir.
E G ν E G ν

0.0 199.83 76.76 0.302 24.97 12.63 −0.012
45.0 198.18 79.44 0.247 22.71 13.07 −0.131
90.0 201.23 78.70 0.278 27.04 10.63 0.272
[◦] [GPa] [GPa] [–] [GPa] [GPa] [–]

Table E.81: The multi-orientation results obtained from the beam-shaped
samples coated with top coat, approach 1.

E1 E2 G12 ν12

All 250µmTC Beams 24.72 24.57 12.02 0.000
All 500µmTC Beams 25.60 24.27 12.16 0.037

[GPa] [GPa] [GPa] [–]

Table E.82: The multi-orientation results obtained from the beam-shaped
samples coated with top coat, approach 2.

E1 E2 G12 ν12

Substrate 200.63 205.65 76.88 0.243
TC 25.86 24.15 12.17 0.052

[GPa] [GPa] [GPa] [–]
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E.4. Electron Beam – Physical Vapour Deposited Coatings
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Table E.84: The considered sample sets of EB-PVD cylinders.

Set 1 Set 2 Set 3 Set 4 Set 5
ECC-01 ✓ ✓ — ✓ —
ECC-02 — ✓ ✓ ✓ —
ECC-03 — ✓ ✓ ✓ —
ECC-04 — — — ✓ ✓
ECC-05 — — — ✓ ✓
ECC-06 — — — ✓ ✓
ECC-07 — — — ✓ ✓
ECC-08 — — — ✓ ✓
ECC-09 — — — ✓ ✓
ECC-10 — — — ✓ ✓

Table E.85: The size of the converged FE-models in terms of elements.

Radius
Samples

Length
Sub. BC TC

ECC-01 14 3 — —
ECC-01 – ECC-02 14 3 1 —
ECC-03 – ECC-10 14 3 1 1

Elastic Properties

Table E.86: The elastic properties identified with the various sample sets.

ESub EBC ETC

Set 1 203.86 — —
Set 2 204.74 194.90 —
Set 3 213.85 176.35 —
Set 4 204.84 193.73 35.74
Set 5 202.68 189.18 42.61

[GPa] [GPa] [GPa]
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