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Abstract 
To successfully make the move to digital prototyping, and thereby reduce the number of physical 
prototypes, predictions of product performance should be provided with a measure of confidence and 
validated against experimental data. Current model validation and updating practice, however, is based 
only on nominal values for input parameters and average test results. Recent advances in computing now 
make it feasible to incorporate scatter on input and output parameters as a logical extension to model 
validation and updating tools. Propagation of uncertainty throughout the structure can be studied, and 
realistic targets for model updating are set. Although some sources of scatter on input parameters can be 
directly observed and quantified, others may not. A mixed deterministic-probabilistic method is presented 
to extend identification of nominal values with identification of combined scatter on input parameters 
using statistical information obtained from repeated vibration tests. This method is demonstrated on the 
identification of elastic modulus of material samples. 
 
 

1 Introduction 
 
Uncertainty in numerical simulation results manifests itself in two main classes: physical uncertainty and 
numerical uncertainty. 
There exist four main levels at which physical uncertainty, or scatter, becomes visible, namely 

• Boundary and initial conditions - impact velocity, impact angle, mass of vehicle, characteristics 
of barriers, etc. 

• Material properties - yield stress, strain-rate parameters, density, local imperfections, etc 

• Geometry - shape, thickness, manufacturing and assembly tolerances, etc. 

• Loads - earthquakes, wind gusts, sea waves, blasts, shocks, impacts, etc. 
Uncertainty is further increased because many of these properties may vary substantially with temperature, 
frequency, or load level. Information on these forms of scatter can be obtained by measurement. A 
sufficient large number of samples need to be evaluated to distinguish the natural and intrinsic scatter from 
the (often high) scatter that may be attributed to a small number of statistical samples.  
Probability distribution functions and their associated properties can be obtained from statistical analysis 
of the test data. For example, the elastic modulus of isotropic material can be described using a normal 
(Gaussian) distribution that is characterized by a mean value and standard deviation.  
The following types of numerical uncertainty can be identified: 
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• Conceptual modeling uncertainty - lack of data on the physical process involved, lack of system 
knowledge. 

• Mathematical modeling uncertainty - accuracy of the mathematical model validity. 

• Discretization error uncertainties – the choice of element types, mesh density, level of 
geometrical detail.  

• Numerical solution uncertainty - rounding-off, convergence tolerances, integration step. 

• Human mistakes - programming errors in the code or wrong utilization of the software, mistakes 
in data or units. 

These types of scatter may or may not exist regardless of the physics involved. An example of the exhibit 
of numerical uncertainty is the different results that may be obtained by two finite element codes, using 
the same finite element model. Indeed changing solver, computing platform, or element formulation can 
be possible causes of significant differences. 
It is clear that uncertainty also exists in testing. Possible causes of physical uncertainty are related to: 

• Test definition – fixture, mounting procedure, excitation method, transducer location, sensor 
weight, dynamic loading. 

• Instrumentation – calibration, distortions, cabling noise. 

• Data acquisition – digital signal processing, measurement and filtering error. 
Techniques like experimental modal analysis are also subject to numerical uncertainty in the mathematical 
models that are used for modal parameter estimation.  
Making a complete inventory of all uncertainties in simulation and test is a challenging task. Moreover, 
not all uncertainties can be described in terms of statistical quantities and should rather be defined using 
minimum and maximum intervals. Examples of such uncertainties are the discretization error uncertainty 
and numerical solution uncertainty.  Other uncertainty like human mistakes is rather incidental and should 
be detected and corrected as part of a continuous analysis quality assurance process. 
 

2 Description of Procedure 
 
The elastic material properties can be derived from the vibration behavior of test samples.  For simple 
beam-like geometries using homogeneous isotropic material, the vibration behavior of the test specimen 
can be described by analytical formulas based on beam theory.  Various methods based on these formulas 
exist, and have proven to produce repeatable and accurate results. 
The finite element technique allows the modeling of the vibration behavior of test samples with an 
arbitrary shape combined with the use of more complex material models.  In [1], an inverse method is 
used to identify the properties of orthotropic plates, by comparing calculated resonance frequencies of a 
finite element model of the test plate with experimentally measured frequencies. Recent work has 
extended this inverse method to identify the elastic properties of the individual layers of layered materials 
[2].  
Figure 1 presents the general flowchart of the inverse method to identify elastic material properties.  Initial 
values for the elastic material properties are estimated and introduced into the FE model of the test plate in 
order to compute the numerical resonance frequencies and frequency sensitivities of first global modes. 
Improved material properties can be obtained from the differences between the experimental and 
numerical frequencies and frequency sensitivities by solving the following least-squares problem: 
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Where: 
{ }eR  Vector containing the reference system responses (experimental data). 

{ }aR  Vector containing the predicted system responses for a given state { }oP  of the 
            parameter values. 
{ }uP  Vector containing the updated parameter values (material properties). 

[ ]S  Sensitivity matrix. 

 
If the corrections of the material properties resulting from (1) are larger than the desired precision, the 
improved material properties are introduced into the FE-model and a new iteration is started, otherwise the 
updating routine is completed.  If the frequencies of the FE-model of the last iteration match the 
experimental frequencies, the material properties of the test plate have been identified since they 
correspond with the material properties of the FE-model. 
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Figure 1: Flowchart of the inverse method for material identification. 

 
In a real world, the uncertainties in model input parameters (e.g. material properties) and test data should 
be accounted for in a probabilistic updating method [3-4]. A mixed deterministic-probabilistic procedure, 
however, can be used as an intermediate step before the advent of entirely probabilistic procedures. In 
such an approach an initial updating of model input parameters is followed by a probabilistic analysis to 
estimate the random properties of the input parameter from the experimentally observed scatter on the 
responses values (resonance frequencies). This methodology is available in dedicated software [5]. 
 
 
 
 
 



3 Example Case 
 

3.1 Test Data 
 
The test sample is a rectangular aluminum beam. Table 1 presents the geometry and mass properties of 
this sample. 
 

Length 76.190 mm 

Width 6.436 mm 

Thickness 6.366 mm 

Mass 8.4386 gram 

Table 1: The properties of the test sample. 

Both the fundamental flexural frequency and torsion frequency were measured 100 times. The sample was 
excited by means of a miniature loudspeaker and the vibration signal was measured with a laser 
vibrometer [6].  
Between each measurement the sample was removed from the test setup. In this way the spreading on the 
frequency also takes the variability of the sample position on the supporting wires into account. 
The average flexural frequency was situated at 5536.25 Hz, and was measured with a sample frequency of 
20 kHz. The average torsion frequency was situated at 19894.45 Hz and was measured with a sample 
frequency of 50 kHz. The excitation signal was a swept sine signal in the range [ fres-500 Hz, fres+500 Hz]. 
The considered flexural frequency is associated with the vibration mode that causes a bending deformation 
in the width-direction, i.e. the considered flexural frequency is the higher of the two fundamental flexural 
frequencies. Additional statistical information reflecting the physical uncertainty on these tests is provided 
in table 2. Scatter is defined as the standard deviation divided by the mean value. 
 

Mode Mean (Hz) St Dev (Hz) Min (Hz) Max (Hz) Scatter (%) 

Bending 5.5362E+3 2.6900E+0 5.5277E+3 5.5437E+3 0.0486 

Torsion 1.9894E+4 3.1650E+1 1.9770E+4 1.9965E+4 0.1591 

Table 2: Statistical properties of test data (100 samples). 

The test results show very low scatter on both frequencies with the scatter on the torsional frequency three 
times larger than on the bending frequency. Figure 3 shows the scatter plot for all test data pairs. The 
figure shows that there is only a weak relationship between bending and torsional frequency. This 
indicates that there are two independent variables that govern these responses. 
Histograms of the test data are shown in figures 4 and 5. The superposed continuous lines show the 
corresponding normal distribution with the same mean and standard deviation. It shows that the bending 
frequency measurements do not correspond to a normal distribution. The kurtosis (sharpness) of the 
observed distribution is much higher than that of a normal distribution. The observed distribution for the 
torsional frequency is closer to a normal distribution although she is not symmetric. 
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Figure 3: Scatter plot between tested bending (X-axis) and torsional (Y-axis) resonance frequencies. 
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Figure 4: Histogram for bending resonance frequency.  
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Figure 5: Histogram for torsional resonance frequency. 



3.2 Finite Element Analysis 
 
A finite element model using 20 general 3D beam elements was used to simulate the bending and torsional 
modes of the test sample. The starting value for the material properties were set to Young’s modulus of 60 
GPA, mass density of 2703 kg/m^3 and Poisson ratio of 0.3. The beam cross sectional properties are 
derived from the measured dimension (see table 1), with shear section area factor 0.8333 which is valid 
for rectangular sections and torsional moment of inertia based on a handbook value. Note that several 
approximations for the torsional moment of inertia of a rectangular section are available in handbooks and 
selecting one therefore introduces uncertainty in the model.  
A lumped mass formulation is used to compute the first 10 modes using the FEMtools solver. The results 
are shown in table 3. Because the section is not a perfect square, computed in-plane and out-of-plane 
modes appear in pairs but at slightly different frequencies.  
Only the second and fifth modes are relevant in this analysis because they correspond with the measured 
values. Comparison with the mean measured values shows that these predictions are underestimated which 
can be explained by the low starting value for Young’s modulus. 
 

Mode Nr. Init. Frequency (Hz) Test Frequency (Hz) Relative Diff. (%) 

1 5212.76   

2 5268.82 5536.25 -4.83% 

3 13886.63   

4 14027.44   

5 17594.87 19894.45 -11.56% 

6 25959.53   

7 26201.04   

8 30885.61   

9 35081.27   

10 40452.34   

Table 3: Initial finite element analysis results compared with test results (mean values). 

 

3.3 Property Identification 
 
Using the mean measured values as target frequencies, input parameters of the FE model are updated by 
running an iterative, Bayesian estimation method [5]. 
The frequency difference between initial estimates and test values for the bending and torsional properties 
shows that a single updating parameter is not sufficient. Updating the Young’s modulus will scale both 
frequencies to obtain a best trade off but will result in an overestimated bending frequency and 
underestimated torsional frequency (table 4). The relative difference with test data is shown between 
brackets. 
Therefore, a second parameter must be introduced that affects one of the two modes in a different way. 
Considering the uncertainty on the torsional moment of inertia, this property is included as an additional 
updating parameter (table 5). The scatter plot in figure 3 also indicates that more than one random 
parameter should be used.  
 



 Before Updating After Updating 

Young’s Modulus 60 GPa 71.37 GPa 

Bending 5268.82 Hz  (-4.83%) 5746.66 Hz  (3.80%) 

Torsion 17594.87 Hz  (-11.56%) 19190.59 Hz (-3.54%) 

Table 4: Model updating using Young’s modulus as parameter. 

 

 Before Updating After Updating 

Young’s Modulus 60 GPa 66.24 GPa  (+10% 

Torsional Moment 2.36E-10 mm^4 2.73E-10 mm^4 (+16) 

Bending 5268.82 Hz  (-4.83 %) 5536.21 Hz  (0 %) 

Torsion 17594.87 Hz  (-11.56 %) 19894.50 Hz  (0 %) 

Table 5: Model updating using Young’s modulus and Ix torsional moment of inertia as parameters. 

The results in table 5 show that complete convergence is obtained when E and Ix are both used as 
updating parameters. The resulting Young’s modulus is in line with handbook values for aluminum and is 
10% higher than the starting value. The torsional moment has to be increased by almost 16% compared to 
the starting value. 
 

3.4 Probabilistic Analysis 
 
The next step is to randomize these properties and simulate the scatter on the output responses as a result 
of applying a probability distribution. A normal distribution is assumed for both E and Ix. Their mean 
values are the values obtained after updating. The standard deviation can be estimated from the 
experimental scatter and the sensitivity of the bending and torsional frequencies for a perturbation of E 
and Ix using a probabilistic method. 
A method that is applicable for this type of analysis is the Mean Value method (MV). From the Taylor 
series expansion that relates responses and parameters, truncated to the linear term, the following 

expression for standard deviation 
2
R j

σ of the responses can be obtained: 
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i,jS  the first-order gradients (= sensitivities) and 
2
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σ  the standard deviation of the parameters (~ 

scatter). The sensitivities are readily available through finite element analysis [5] and 
2
R j

σ  are known 

from statistical analysis of the test data (table 2) so that this equation 2 can be solved for the unknown 
2
Pi

σ . 

The resulting random properties for E and Ix are shown in table 6.  
 
 
 



 Mean value Scatter (%) PDF Type 

Young’s Modulus 66.24 GPa 0.0972 Normal 

Torsional Moment 2.73E-10 mm^4 0.3029 Normal 

Table 6:  Random properties for Young’s modulus and torsional moment of inertia.  

The random parameter properties are used to generate 100 random Monte Carlo samples and re-analyze 
the FE model with the sample values. The resulting 100 bending and torsional frequencies are statistically 
postprocessed. The results are shown in table 7. 
 

Mode Mean (Hz) St Dev (Hz) Min (Hz) Max (Hz) Scatter (%) 

Bending 5.5363E+3 2.6288E+0 5.5300E+3 5.5418E+3 0.04748 

Torsion 1.9899E+4 3.1308E+1 1.9824E+4 1.9983E+4 0.1573 

Table 7: Random properties of the responses. 

The values for scatter in the last column of table 7 correspond very well with the experimental values 
(table 2). 
In figure 6 the scatter plot resulting from the Monte Carlo sampling is overlaid with the reference test data 
cloud. It shows that the position, orientation, shape and size (“POSS”) of the two point clouds match 
sufficiently well and no further iterations are required. 
Note that, given the shape of the histograms in figures 4 and 5, the assumption of a normal distribution for 
the random parameters can be questioned. Using another distribution type that produces a sharper PDF 
should be more appropriate and further improve point cloud correlation. 
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Figure 6: Overlaid scatter plots of test (dark) and simulation (light) resonance frequencies. 

 
As was demonstrated before, at least two random parameters are required to obtain this result. To confirm 
that randomizing only the Young’s modulus E is not sufficient, the overlaid scatter plots for this case is 
shown in figure 7. Although position and size are matching, the shape correlation of the two point clouds 
is not satisfactory and so this simulation does not sufficiently represent reality.  
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Figure 7: Overlaid scatter plots of test (dark) and simulation (light) resonance frequencies in case 

only the E-modulus is randomized. 

 

3.5 Numerical Uncertainty in FE Analysis 
 
To investigate spreading on the finite element analysis results, two FE models were made, one with 2736 
Hex8 elements (using 6 X 6 element grid to model a section) and one with 3D general beam elements 
using increasing element density between 5 and 200 elements. In addition, the analysis was repeated with 
lumped and consistent mass distribution, and using different standard analysis codes (NASTRAN, 
ANSYS, ABAQUS). In total, 18 different analysis cases were solved. The material properties were set to 
Young’s modulus of 60 GPa, mass density of 2703 kg/m^3 and Poisson ratio of 0.3. 
Figure 8 shows the results for the 7 first resonant frequencies using beam elements with lumped mass for 
increasing element density. The 5th frequency is the torsional mode; the other frequencies are bending 
modes that appear in pairs (in-plane, out of plane). It was concluded that minimum 20 elements are 
required. The analysis using consistent mass was less sensitive to mesh density. There was almost no 
difference between the analysis codes. 
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Figure 8: Resonance frequencies as function of the mesh density (beam elements with lumped mass). 



The analysis results obtained using Hex8 elements also showed large consistency between the analysis 
codes with differences only due to the mass distribution. 
The results could be reduced to 10 different sets of unique combinations of bending and torsional resonant 
frequencies. The statistical information on these results is shown in table 8. 
 

Mode Mean (Hz) St Dev (Hz) Min (Hz) Max (Hz) Scatter (%) 

Bending 5.283E+3 30.64 5.236E+3 5.309E+3 0.5799 

Torsion 1.758E+4 132.60 1.735E+4 1.782E+4 0.7542 

Table 8: Statistical properties of FE data (10 cases). 

The scatter on the bending and torsional resonant frequencies is of same magnitude. This scatter, only due 
to numerical uncertainty in the simulation, is about ten times larger than the physical scatter on the test 
data of the bending resonant frequency (see table 2).  Note that this conclusion applies to this example but 
should not be generalized. In practical situations that involve test data acquired under less favorable 
conditions, scatter on the test data may well surpass the scatter attributed to numerical uncertainty. 
Figure 9 shows an overlaid scatter plot between the 10 retained solutions and the test data. The solution 
that was used in the previous sections 3.2 to 3.4 is circled. The procedure that was followed here was to 
select that one representative solution, update the simulation model so that the result coincides with the 
mean of the test point cloud, and then randomize the simulation model. The scatter on test data, which 
reflects the total physical and numerical uncertainty on the test data, is thus used to identify physical 
scatter on the random parameters. As can be seen from figure 9, numerical uncertainty on the finite 
element analysis results can be significant and should also be taken into account to further define the 
bounds of validity of the obtained identification results. 
The numerical uncertainty is not stochastic but reflects the existence of a variety of acceptable starting 
models and analysis settings from which an engineer may choose depending on experience and judgment. 
It seems therefore appropriate to treat this type of numerical uncertainty using an interval method. 
However, such analysis was beyond the scope of the present paper.  
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Figure 9: Overlaid resonance frequencies scatter plots of test (dark) and 10 different simulation 
cases (light). 

 
 



4 Conclusions 
 
A practical methodology was described to estimate the random properties of input parameters for finite 
element analysis using from scatter on reference test data, obtained from repeated testing. The method 
uses a combination of classical sensitivity-based model updating and probabilistic analysis in a two-step 
approach. A real-life example of identifying the material Young’s modulus and beam section moment of 
inertia was used to demonstrate the procedure. 
In addition to accounting for physical scatter on the input parameters, analysts should be aware of the 
numerical uncertainty that is inherent in every simulation. Future work should focus on how to incorporate 
numerical uncertainty in the procedure. Furthermore comparison or combining the results with other 
methods like the interval method [7] should be investigated. 
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