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Parameter studies in FSI-problems may often become quite time consuming. In most cases the fluid parameters 

are well defined and only the influence of the parameters of the solid component is subject to investigate. 

Therefore it would be desirable to investigate the fluid and solid part separately and finally combine them using 

CMS-Methods. This approach would also provide a good physical insight into the individual and combined 

behaviour of the components fluid and solid. Generally for each interface DOF one constraint mode must be 

added to the modal base. Since in most problems in FSI the fluid-structure interface involves many DOF the 

general CMS approach becomes inefficient. To reduce the number of constraint modes it is proposed to use the 

mode shapes of each component as a load function on the other domain. The static solution provides the modal 

based attachment modes (MAM). Their number corresponds to the number of total component modes which is 

in most cases much less then in the classic approach. The application is shown in optimization, updating, and a 

parameter study. 

  

1 Introduction 

Considering structure and fluid as components in an FSI-

problem in a FE-analysis, the idea to apply CMS is 

obvious. In order to describe the interaction forces each 

CMS methods requires a number of constraint modes. 

Usually their amount depends on the amount of interface 

DOF. Since those are quite numerous in typical FSI 

problems a more efficient description of the interaction by a 

small amount of form functions would be desirable. An 

efficient method is proposed where the constraint modes 

are formed on the base of the modal DOF of each 

decoupled subsystem (Modal based Attachement Modes, 

MAM).  

2 Application of CMS in FSI 

Fluid-Structure-Interaction (FSI) can be described by a 

coupled system of equations (1) in a Finite-Element 

formulation with the mass matrix M and a stiffness matrix 

K for the components solid (displacement w as degree of 

freedom) and the component fluid (pressure p as degree of 

freedom). The matrices KSF und MFS establish the coupling 

of the individual components. 
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Modal transformation offers advantages if the modal base 

can be reduced to a set of few mode shapes used for 

transformation to a system with few modal DOF (2).  
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To compensate the truncation error it is common practice to 

integrate additional attachment modes into the modal 

base  (3), which include the quasi static contribution of 

the dynamically not active mode shapes of the higher 

eigenfrequencies. 
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Since the topology of interaction is not predictable two 

form functions must be provided for each DOF at the 

interface in classic CMS-Methods („free“, „constrained“, 

Craig-Bampton etc.). By their superposition with the modal 

bases of the components the interaction topology can be 

closely approximated. The classic methods are therefore 

advantageous as long as the number of interaction DOF is 

small, since then also the amount of additional constraint 

modes remains small (application in [3]). 

3 Generation of MAM 

3.1 Procedure 

The number of interaction DOF between a fluid and a solid 

is often considerably high. Specifically when modelling a 

simple plate resonator in a room to simulate room acoustics 

the amount of interaction DOF corresponds to the number 

of nodes of the shell elements of the resonator. Classic 

CMS becomes inefficient in this case. 

In a first step it is assumed, that the interacting forces in the 

interface can be approximated by a superposition of the 

unconstrained modes of the corresponding attached 

component. In a next step the modes of one component are 

considered as Neumann boundary conditions for the other 

component at the interface. Analogically to the mode 

acceleration method or the modal augmentation method 

attachement modes are computed by solving a static 



 

equation (4). Instead of DOF-related “attachment modes” 

form functions are computed which refer to modal DOF 

(MAM). In the special case of FSI this approach is 

applicable since an interaction between Neumann and 

Dirichlet boundary condition is established in the system of 

equations in the interface. 

 














































Ifluid
nattSattSsolid Φ

0
ψψK ,1, 










































Isolid

nattFattFfluid Φ

0
ψψK ,1, 

 (4) 

 

3.2 Validation example: plate resonator 

Fig. 1 shows a closed volume of air with a plate structure 

with hinged boundary conditions. In total ten decoupled 

modes were computed in a frequency range between 70 … 

200 Hz. To compute the MAM’s each mode of one system 

was used as a Newman boundary condition of the other 

system at the interface. The modes of the fluids are used as 

a pressure load on the plate and the modes of the plate as an 

acceleration load on the fluid.  

Fluid: air, 2 m x 1,2 m x 0,1 m 

Solid: 1 mm alu-sheet
1400 mm x 600 mm

Fluid: air, 2 m x 1,2 m x 0,1 m 

Solid: 1 mm alu-sheet
1400 mm x 600 mm

 

Fig.1 FE-model of a plate resonator coupled to a fluid 

volume 

The static solution vectors of the plate displacement is 

orthogonalized to the existing normal modes and to each 

other and then added to the modal base of the plate. 

Accordingly the static fluid pressure vectors obtained by 

the static solution of the fluid component are also 

orthogonalized and added. To get the static solution of the 

unconstrained fluid first needs a compensation of 

acceleration “load” vector by the rigid body mode. 

Otherwise the solution would be singular.  
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Fig.2 Generation of MAM, top: static deflection shape of 

the plate resulting from the pressure field of mode 1 of the 

fluid; bottom: “static” pressure by applying an acceleration 

vector of the 1
st
 mode of the plate with hinged bc. 

Then the total modal base contains 10 normal modes + 10 

MAM. In table 1 the first 10 natural frequencies are 

compared to the approximated solution in modal domain.  

coupled mode 1 coupled mode 2coupled mode 1 coupled mode 2

 

Fig.3 FSI, coupled modes 

While the solution with MAM corresponds almost exactly 

to the reference solution of the total coupled system of 

equations, the solution without MAM differs by up to 

4.3 %. The same result could of course be obtained by 

applying classic CMS. In this case 377 attachement modes 

would have to be computed. Even with 20 modes the error 

does not become significantly smaller without additional 

constraint modes. It would take 100 modes and more to 

approximate the reference solution sufficiently.  

Mode Reference

Nr. Hz Hz Diff. % MAC Hz Diff. % MAC

1 69.7 69.7 0.0 100 71.3 2.2 99.2

2 79.2 79.2 0.1 100 82.4 4.1 99.1

3 98.7 98.7 0.0 100 102.7 4.0 98.5

4 112.5 112.5 0.0 100 117.4 4.3 96.5

5 137.0 137.0 0.0 100 137.3 0.3 99.9

6 152.1 152.1 0.0 99.9 157.0 3.2 94

7 161.0 161.2 0.1 100 162.4 0.9 99.8

8 173.6 173.6 0.0 100 175.1 0.9 99.5

9 188.8 190.5 0.1 99.9 208.7 2.7 85.5

10 203.3 203.4 0.1 99.1

Average 0.0 99.9 2.5 96.9

10 Modes + 10 MAM's 10 modes w/o MAM's

 
Mode Reference

Nr. Hz Hz Diff. MAC Hz Diff. MAC

1 69.7 70.4 1.0 99.8 69.9 0.3 100

2 79.2 81.0 2.4 99.6 79.6 0.6 100

3 98.7 100.4 1.7 99.7 99.1 0.4 100

4 112.5 116.6 3.7 97.4 113.2 0.6 100

5 137.0 137.2 0.1 100 137.0 0.0 100

6 152.1 156.3 2.8 96.5 153.0 0.6 99.9

7 161.0 161.1 0.1 100 161.0 0.0 100

8 173.6 174.6 0.6 99.8 173.7 0.1 100

9 188.8 193.4 2.5 95 189.8 0.6 99.8

10 203.3 208.2 2.4 91.8 204.6 0.7 99.6

Average 1.7 98.0 0.4 99.9

w/o MAM's, 100 modesw/o MAM's, 20 modes

 

Table 1 Eigenfrequencies, error in % and MAC, correlation 

of the solution by CMS with and without MAM to 

reference. 

4 Application 

4.1 Parameter study of ship floors 

Fig.4 shows the principle design of three different types of 

floating floors in ship floor structures. Type 1 includes a 

classic layer of mineral wool. In type 2 and 3 the top plates 

are mounted on descrete elastomer elements to achieve 

lower tuning frequencies of the floor system. Type 3 

combines the springs with an additional layer of mineral 

wool. 



 

 

Fig.4 FSI, coupled modes 

The transmission of structure borne sound was studied by 

simulation. Within this study the effect of the closed air 

volume between the plates was not clear. Typical models 

simply add the vertical stiffness of the enclosed air cushion 

to the stiffness of the isolating material. This approach 

however neglects the effect of transversal modes of the 

fluid volume. In a parameter study of similar systems this 

effect may be significant. Therefore a second model was 

created modelling explicitly the air volume and assuming 

FSI. To avoid excessive computational time in a repetitive 

parameter study, an evaluation in modal domain was 

extremely efficient using MAM.  
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Fig.5 Spectra of transmission of structure borne sound in 

dB, comparison of an FSI-model and a substitute model 

with spring elements 

Fig. 5 compares the transmission spectra of both 

approaches, with and w/o FSI. Within the critical frequency 

range between 40 … 100 Hz the differences are significant. 

4.2 Optimization of a reverberation room 

Figure 6 shows the FE-model of a reverberation room 

equipped with 12 possible positions of plate resonators. 

Four resonators shall be installed to simulate a larger room 

size in the lower frequency range. In a first step the volume 

is modelled. The modes of the fluid and for all possible 

resonators are computed separately. This is equally done for 

the MAMs. The 495 possible combinations are then 

computed in modal domain which is simply set up by 

activating the modes of the respective resonators and their 

constraint modes. The FRF are then examined by modal 

superposition.  

   

Fig.6 FE-model of a reverberation chamber with 12 

possible resonator positions (left) and one orthogonalized 

“static” MAM of the fluid component. 

4.3 Updating of a car interior 

Figure 7 shows a set of plate resonators of a car interior. 

Their natural frequency is tuned by the stiffness of the 

spring elements supporting the resonators. The residue 

between measured and computed frequency response 

functions is minimized by updating of the spring 

stiffnesses. Also in this case the modal base of the car 

interior must only be computed once. Since the FRF have to 

be recalculated for each updating iteration, an analysis in a 

reduced modal base was extremely time saving. 

 

Fig.7 FE-Model of a car interior with plate resonators 

5 Conclusion 

CMS methods are specifically suited for optimization and 

updating tasks as long as the number of DOF at the 

component interface is small in relation to the total amount 

of DOF. However in FSI the number of interface DOF is 

generally not small when dividing the structure into a solid 

and a fluid component.  

Involving constraint modes based on modal DOF (MAM) is 

highly efficient. Modal analysis is performed on symmetric 

matrices. In a reduced modal base the computational time is 

decreased to a fraction of the time which is consumed by 

the solution of the total system of equations with 

unsymmetric matrices.  
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