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ABSTRACT

Updating finite element models directly from experimental
Frequency Response Functions (FRF), instead of using
modal parameters, has been the subject of extensive
research in recent years. This paper presents a new
approach, which is based on maximizing the correlation
between analytical and experimental FRFs in terms of
functions that describe the FRF shape and amplitude
correlation over a frequency band.

The proposed method offers several advantages over
alternative approaches related to the choice of reference
frequencies, computational overhead, and convergence
characteristics. In addition, it was found that updating
results are fairly insensitive to noise on the measured
FRFs. Implementation and application of the method is
using an iterative scheme and Bayesian parameter
estimation similar to what has already been successfully
applied in modal-based updating methods. Somel
examples are included to demonstrate the benefits of this
new method.

1. INTRODUCTION

Frequency response function methods directly employ the
measured quantities for updating and therefore circumvent
tedious modal parameter extraction in a previous step.
Theoretically, if noise-free measurements are available, the
measured frequency response function represents an
equation of motion at each frequency point (spectral line)
that governs the dynamic behavior of the system precisely.
It fully characterizes the system and contains in particular
all the damping properties, which on the other hand must
be modeled in the modal model, and hence approximated.
Inherent truncation errors of modal models are not present
in the measured FRFs as the effect of all modes is truly
contained in the acquired data.

A variety of different approaches to FRF-based updating
can be found in literature. An overview is given in Friswell

and Mottershead [1]. In general, these methods rely on a
selection of frequency points at which a residual is
evaluated and then minimized. It was observed that due to
properties of the FRFs, the use of a Taylor series
expansion with first-order sensitivities may lead to divergent
behavior depending on the choice of frequency points.
Furthermore, the choice of frequency points also influence
the updating results in the presence of noisy test data. The
success rate of these methods is therefore largely
dependent on the optimal choice of frequency points, which
reduces their practical applicability.

It is not correct to assume that the error on the first-order
differential FRF sensitivities is constant over the frequency
range of interest. On the contrary, differences between
differential and finite difference sensitivities are very
variable over the frequency range and can become very
large [2]. This result partially explains why one selection of
frequency points will lead to convergence while another
selection may cause divergence. Moreover, at different
iteration loops, the shape of FRFs change and thus a good
selection of frequencies points may be a bad selection in
the next iteration. This explains unstable convergence
when the selection of frequency points is kept identical for
each iteration.

In a newly proposed FRF-based updating method [2,3], the
problem of selecting a number of frequency points is
avoided. In this method, all frequency points are considered
and weighted according to the level of agreement with the
measurements. The error residual that needs to be
minimized is derived from the correlation between all
available analytical and experimental FRFs, expressed in
terms of shape correlation and amplitude correlation. The
correlation is evaluated at all frequency points instead of at
a number of selected reference frequencies. This has an
averaging effect so that ‘bad’ choices are compensated by
‘good’ ones. Therefore, convergence stability, even in the
presence of noise test data, benefits from this approach
while at the same time making practical application of FRF-
based updating much easier.
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2. FRF CORRELATION FUNCTIONS

A measure of correlation between FRFs, equivalent to the
Modal Assurance Criterion (MAC), is adapted for the

frequency domain. At each frequency point w, , the level of
correlation between all corresponding experimental FRFs
(ay ) and predicted FRFs (a, ) is evaluated as
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with k = 1,2, ... N; the number of frequency points. CSAC

stands for Cross Signature Assurance Criterion. This
criterion function is a measure of shape correlation with
values ranging between 0 and 1. Because the shape of an
FRF is mainly determined by the position and number of
resonance peaks, this function is most sensitive to changes
of mass and stiffness modeling.

To completely characterize the correlation between FRFs, it
is necessary to introduce a second correlation function that
evaluates discrepancies between amplitudes. This function
is referred to as Cross Signature Scale Factor or CSF and
is defined as
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Like CSAC, the values of CSF can range between 0 and 1.
Because CSF evaluates amplitude, this function is more
sensitive to changes of damping.

Together, these two FRF correlation functions are referred
to as the Cross Signature Correlation (CSC) functions.

3. FRF CORRELATION SENSITIVITY ANALYSIS

The sensitivity coefficients for FRF correlation functions
CSAC and CSF are obtained by taking the differentials of
equations (1) and (2) with respect to a parameter p. If this is

done for N, parameters, then a sensitivity matrix [S] is

obtained with dimension 2N; x N. There are twice as

many equations as there are frequency points in the
frequency range of interest.

In the general case of a damped structure, the sensitivities
are functions of the analytical and experimental FRFs but
also of the differentials of the real (Re) and imaginary (Im)

parts of the analytical FRFs [2, 3]:
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The sensitivities are not purely analytical but include

experimental data. Therefore, one could refer to them as

mixed analytical-experimental sensitivities. Moreover,
fla;

unlike aj or ﬂ_” they are real values which makes them
p

more easy to interpret.

The differentials of a, are obtained as
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Note that the receptance matrix a, is the inverse of the
dynamic stiffness matrix:
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with

[2] = [K]+iw[D]- w’[m] (®)

Solving equation (6) at each frequency point can become
unfeasible for larger systems. However, usually a modal
solution is available, and it is much more efficient to apply a

modal transformation to approximate a , as

[a, )] » [F]we - W +2wwz ['F] @

where [F] represents the modal matrix (mode shapes)
normalized with respect to the system mass matrix, w, are

the resonance frequencies and z, is the viscous damping

ratio commonly used to specify the amount of damping as a
percentage of the critical damping.
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4. FE MODEL UPDATING USING FRF CORRELATION
FUNCTIONS

The validity of a finite element can be evaluated as a
function of how well experimentally obtained frequency
response functions correlate with the ones predicted using
the finite element model. Updating the FE model in this
context means changing the structural behavior, in terms of
mass, stiffness and damping characteristics, in such a way
that the CSAC and CSF functions converge to 1 in the
frequency range of interest. Mathematically, the following
error function needs to be minimized [4]:

E = De'CrDe+Dp'C,Dp (10)
with
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and p the selected updating parameters. This can be a
material property, plate thickness, lumped mass, joint
stiffness or any other physical element property.

Crand C, are respectively diagonal weighting matrices for

the selected FRF correlation function values and for the
updating parameter values. Each weight may be
considered as the level of confidence one has in the value.

Solving (10) for the unknown design changes, in case
2Ny > N, yields:
o0 = [+ [ [calls] ‘S leeloe a2)

The sensitivity matrix [S] is
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5. DISCUSSION

Using FRF data directly offers several advantages over
using modal parameters. FRFs are not subject to curve-

fitting errors and provide information on damping
characteristics over the entire measured frequency
spectrum. Several FRF-based methods have been

presented in literature over the last decade but most of
them fail in practice due to excessive computations, or to
numerical instability. Both types of problems can be related

to choice of frequency points. The new method presented
herein has been designed to overcome these drawbacks
and turn FRF-based updating into a practical, efficient and
easy-to-use complement to modal-based updating
methods.

The selection of frequency points used in the updating
equations, often a crucial and difficult issue in alternative
methods, is avoided in the present method. Simply the
frequency range must be selected and all frequency points
in this range are used in the updating procedure. However,
this does not exclude that filters be added to exclude
frequency points. This may be to

- Enhance stability - Too many spectral lines on or near
resonance frequencies can lead to numerical
instability.

- Focus on damping — Only frequency points around
resonance frequencies are effective to update
damping.

- Reduce computation time — If a small frequency step
was used, including all frequency points yields too
many redundant data and requires unnecessary
calculations.

The advantage of using many frequency points is that 'bad’
choices are compensated by ‘good’ choices. Bad choices
are frequency points for which the differential FRF
amplitude sensitivity contains too much error, or the test
data is too noisy.

Although the updating results benefit from adding more
FRFs, this does not increase the number of frequency
points, unlike traditional FRF-based updating methods.

Indeed, the number of updating equations 2N; is only

determined by the number of frequency points in a selected
frequency range, and not by the number of FRFs.
Therefore, adding more FRFs to the database does not
change the calculation time required for updating, but has
only minor influence on the calculation times required for
FRF correlation analysis, and sensitivity analysis.

When a modal transformation is used to compute FRF
correlation sensitivities (equation 9), a modal eigensolution
is required with each iteration loop. It is important to include
a sufficient number of modes in the modal transformation
(highest resonance frequency > 2 X highest frequency in
the range). It is also useful to limit the parameter
modification per iteration loop because first-order
sensitivities are used.

The analytical FRFs are usually synthesized from the
normal modes of the structure. These FRFs too suffer from
truncation and the measured FRFs do not. The FRF
correlation functions are more heavily affected by the larger
amplitudes, which in turn are mainly caused by modes.
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They are less sensitive to anti-resonances, which are
significantly smaller but heavily affected by truncation.
Therefore, the costly direct computation of FRFs instead of
using synthesis is not as critical here as they are in the
classical FRF updating approaches using spectral lines.

Other equally important considerations that are not further
discussed here are the :

1. number of computed normal modes vs. the FE mesh
density

2. spatial distribution and number of pickup sensors

Although the proposed updating method allows for
simultaneous updating of mass, stiffness and damping, this
approach is seldom successful. Using a 2-step procedure in
which first mass and stiffness are updated (with highest
impact on CSAC) and then subsequently updating of
damping (with highest impact on CSF) has proven to work
better in practice.

6. APPLICATION EXAMPLES

To demonstrate the application of the proposed method,
important stiffness modeling errors in a plate model are
simulated. Using the normal modes of the altered FE
model, several FRFs are synthesized that serve as
reference data. Updating was done by selecting CSAC and
CSF values in the 50-250 Hz band with a frequency step of
1 Hz. The FEMtools updating software was used for all
analysis [5].

Figure 1 shows that the initial FRF-correlation conditions
show CSAC and CSF values that average around 60%.

Figure 2 shows the updating results after 10 iterations.
Convergence is indicated as the average residual error
between the actual values of the CSAC and CSF functions
and their target values (= 1). Convergence is almost
complete after 10 iterations.

Figure 3 shows the correlation results when updating is
done (10 iterations) in the 50-250 Hz band.
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Figure 1. Initial CSAC (top) and CSF (bottom) function
for 0-600 Hz.
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Figure 2. Average residual error of CSAC and CSF as

function of iteration loop.
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Figure 3.

In the previous test case, updating was done with idealized
noise-free test data. Now 15% multiplicative noise is added
to the reference FRF data and the calculations repeated
under the same conditions. The polluted response vector
{a }is obtained by the following operation

fa} = {al{u+ Kfnoisd) (1o

with k the percentage multiplicative noise and {noise} a
vector of random numbers between 0.0 and 1.0.
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Average residual error of CSAC and CSF as
function of iteration loop in case of noisy test
data.

Figure 4.
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Figure 5. Detail of a test-FEA FRF pair after updating
using noisy test data.

It can be concluded that the updating method behaves
remarkably well even when noisy test data is used (figure
4). However, as could be expected, complete convergence
can no longer be obtained. The synthesized analytical
FRFs are to be considered as smoothed curve-fits of the
noisy experimental FRFs (figure 5).

7. CONCLUSIONS

Two expressions are defined to measure the correlation
over a given frequency range between a set of
experimental FRFs and their analytical counterparts. These
functions are used in a sensitivity-based updating scheme
that tends to maximize their values by iteratively changing a
set of updating parameters.

Verification analysis using simulated test data has shown
that the method leads to stable convergence, and behaves
well in the presence of noisy test data. In addition, the
method is extremely easy to use and, if a modal
transformation is used for sensitivity analysis, very cost-
efficient even if many frequency points are used. The
computation time is not much depending on the number of
FRFs that are included in the analysis.

In cases where using local information is important, only a
few FRFs are available, and the frequency band of interest
is narrow, the traditional methods may be preferable. In all
other cases, the newly proposed method shows clear
advantages. To test the industrial applicability, the method
has been applied successfully on large FE models with real
test data. However, more application experience is still
required. Future papers will report on this.

The limitations of the current approach are mainly related to
the use of first-order differential sensitivities computed
using modal transformation of the dynamic stiffness matrix.
These sensitivities are only valid for small parameter
perturbations, require that a sufficiently high number of
eigenmodes is taken into account and that the eigenmodes
do not vary much due to the parameter perturbation. Off
course, these conditions are more difficult to satisfy when



E. Dascotte, J. Strobbe - Updating Finite Element Models using FRF Correlation Functions — September 1998

large parameter errors are required to improve FRF
correlation. At the cost of doing more iterations, forcing
small parameter changes per iteration loop is one approach
to overcome this situation. However, like all gradient-based
minimization schemes, this does not exclude the possibility
that a local minimum is found rather than the global one.
Alternatively, using a direct solution for sensitivity analysis
instead of a modal transformation, using higher-order
sensitivities, using logarithmic sensitivities or altogether
using a different minimization scheme, are topics for future
work that hold promise to further enhance the performance
of the method.
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