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Abstract 
 
 
 
This thesis investigates if global effective orthotropic material properties can be determined 
by measuring a certain amount of natural frequencies of composite structures. Natural 
frequencies contain mass and stiffness information and as such there is a possibility that this goal 
can be reached. The developed procedure belongs to the group of mixed numerical experimental 
methods. The procedure can be explained as follows.  
 
First, experimental modal analysis (EMA) is used to extract the natural frequencies of the 
physical structure. This modal data is used as reference response data during the procedure.  
 
Next, a mathematical model of the structure is created. In the physical model all mass and 
stiffness related properties are known except for the anisotropic material properties. All known 
properties are implemented as such into the mathematical model. One is interested in global 
properties of the structure (e.g. stiffness) and not in local properties (e.g. ply orientation, ply 
properties). Therefore, the real composite material is modelled as a global homogeneous  
orthotropic material in the mathematical model. This mathematical model is solved for modal 
data using finite element analysis.  
 
Finally, two sets of non matching modal data are available. One set composed of experimentally 
obtained reference data. The other set contains calculated data from the mathematical model.  
The orthotropic material properties, also called parameters, are then modified in such a way that 
both sets of modal data match. If those two sets match, the virtual model has “in a global sense” 
the same mass and stiffness properties as the real model.  
 
A program written in FEMtools is applied to five test cases. A first test case considers a beam 
made out of steel. The program correctly identifies the isotropic properties of steel, making use 
of analytical calculated natural frequencies. Afterwards, the program is used to identify the 
orthotropic material properties of four different composite beams. One closed box beam and 
three beams with open cross section. In each case, the program is able to identify certain 
orthotropic material properties. Which property can be identified, varies from case to case. It is 
also shown that the program can be used to detect a most optimal length to identify a certain 
preferred material property. 
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Introduction 
 
 
 
Most engineers have considerable experience in the design of simple structural components 
using isotropic materials. However, today more and more composite materials are used for 
structural elements. Mainly because of their superior properties, such as high stiffness- and 
strength-to-weight ratios, excellent fatigue resistance and high resistance to environmental 
degradation. Secondly, production techniques are available to produce such components of 
constant quality in a cost efficient way. 
 
In load carrying applications one is mainly interested in the stiffness properties of the structural 
component. Elastic and shear moduli supplemented with section properties render the stiffness 
properties of the component. Moduli of isotropic materials are well known and well documented. 
This is not the case for composite materials. The effective laminate properties depend on fiber 
material, matrix material, ply orientation, laminate thickness, stacking sequence, etc … . Infinite 
combinations are possible, resulting in a huge amount of different moduli. It is clear that not all 
possible scenarios are studied in literature.  
 
If all the details of the composite material are known, the engineer can calculate effective 
laminate properties and use them in theories like for example the first-order shear deformation 
theory for thin-walled laminated beams. If the ply lay-up results in coupling phenomena, the 
engineer has to use advanced software to simulate the behavior of the structure. All this requires 
substantial effort.  
 
In some cases, not all the details of the composite material are known. For example, the exact 
fiber orientation at a certain area of the structure. Here, elastic properties can be determined by 
experiment. Drawback, these experiments are destructive in nature. Another possibility is to 
obtain stiffness properties of the whole structure by conducting an experiment. Drawback here, 
influence of boundary conditions. All this requires substantial effort.  
 
Above reflections are discussed and explained in Chapter One: Literature review. 
 
 
 
This thesis investigates if global effective orthotropic material properties for the composite 
material can be determined by measuring a certain amount of natural frequencies of the 
structure. Natural frequencies contain mass and stiffness information and as such there is a 
possibility that this goal can be reached. The developed procedure belongs to the group of mixed 
numerical experimental methods. The procedure can be explained as follows.  
 
First, experimental modal analysis (EMA) is used to extract the natural frequencies of the 
physical structure. This modal data is used as reference response data during the procedure. 
Aspects concerning experimental modal analysis are discussed in Chapter Two: Experimental 
modal analysis. 
 
 
 
 
 
 



Next, a mathematical model of the structure is created. In the physical model all mass and 
stiffness related properties are known except for the anisotropic material properties. All known 
properties are implemented as such into the mathematical model. One is interested in global 
properties of the structure (e.g. stiffness) and not in local properties (e.g. ply orientation, ply 
properties). Therefore, the real composite material is modelled as a global homogeneous  
orthotropic material in the mathematical model. This mathematical model is solved for modal 
data using finite element analysis. More information can be found in Chapter Three: The virtual 
model. 
 
Finally, two sets of non matching modal data are available. One set composed of experimentally 
obtained reference data. The other set contains calculated data from the mathematical model.  
The orthotropic material properties, also called parameters, are then modified in such a way that 
both sets of modal data match. If those two sets match, the virtual model has “in a global sense” 
the same mass and stiffness properties as the real model. This principle is called model updating 
and is discusses in Chapter Four: Model updating. 
 
 
 
If it is possible to identify orthotropic material properties by natural frequency measurement, 
then the procedure must be automated. User input is restricted to coordinate points to define 
the geometry, initial parameter values and reference responses. Information about program input 
is found in Chapter Five: Program Outline. 
 
Chapter Six and Seven give an idea of how the program can be used in practise to estimate 
stiffness properties of structural elements.  
 
 
 
The mixed numerical experimental approach offers a number of advantages: 
 

Natural frequencies of structures can be measured conveniently and accurately 
Vibration test are repeatable and non-destructive 
Tailor-made holding fixtures are not required as in conventional tests 
No specialized training required to use the application 
Minimum amount of calculation to obtain stiffness properties of the beam 
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Chapter One:  Literature review 
 
 
 
1.1 Mechanical behavior of  composite materials 
 
 
1.1.1  Linear elastic stress-strain characteristics of fiber-reinforced material 
 
The study of the mechanics of fiber-reinforced composites could begin at several points. Because 
the fiber plays a key role in the performance of the material, one logical starting point would be 
to study the interaction of the fiber with the matrix. One might address a host of problems: 
stresses in the fiber, stresses in the matrix around the fiber, adhesive stresses at the interface, 
breaking of the fiber, etc … . This localized look at the interaction of the fibers and the matrix is 
called micromechanics. On the other end of the spectrum, interest centers on the behavior of 
structures made using fiber-reinforced material. Deflections, vibration frequencies and many 
other more global responses are of interest. 
 
It is convenient to use an orthogonal coordinate system that has one axis aligned with the fiber 
direction. The system is identified as the 1-2-3 coordinate system or the principal material 
coordinate system. Figure 1.1 illustrates an isolated layer and the orientation of the principal 
material coordinate system. The 1 axis is aligned with the fiber direction, the 2 axis is in the 
plane of the layer and perpendicular to the fibers and the 3 axis is perpendicular to the plane of 
the layer. The 1 direction is the fiber direction, while the 2 and 3 directions are the matrix 
directions. 
 
 

 
 

Figure 1.1 : Principal material coordinate system 
 

 
The effect of the fiber reinforcement is smeared over the volume of the material and the fiber-
matrix system is replaced by a single homogenous material. This single material has different 
properties in three mutually perpendicular directions and thus considered as orthotropic. As a 
result, a layer is said to be orthotropic. 
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Figure 1.2 : Stresses acting on a small element of fiber-reinforced material 
 

 
Figure 1.2 illustrates a small element of smeared fiber-reinforced material subject to stresses on 
its six bounding surfaces. This small volume of material has been considered removed from the 
plate in the previous figure. The normal stress acting on the element face with its outward normal 
in the 1 direction is denoted as σ1. The shear stress acting in the 2 direction on that face is 
denoted as τ12 and the shear stress acting in the 3 direction on that face is denoted as τ13. The 
normal and shear stresses acting on the other faces are similarly labeled. The extensional strain 
responses in the 1-2-3 coordinate system are denoted as ε1, ε2 and ε3 while the engineering 
shearing strain responses are denoted as γ12, γ23 and γ13. With this notation ε1 is the stretching of 
the element in the 1 direction, γ12 is the change of right angle in the 1-2 plane, and so on. 
 
The stress-strain relation for the small element of material can be constructed by considering the 
response of the element to each of the six stress components. As only linear elastic response is to 
be considered, superposition of the responses will be used to determine the response of the 
element to a complex or combined stress state. Only the relevant results are mentioned here, for 
details see reference (Ref.1). All the relationships between the stresses and strains take the 
collective form  
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 where:  { }ε     =     strain vector 

   [ ]S     =     compliance matrix 
   { }σ     =     stress vector 
     Ei     =     Young’s modulus in the i direction  

    ijν     =     Poisson’s ratio 
    Gij     =     shear modulus in the ij plane 
 
 
 
The inverse of the compliance matrix is called the stiffness matrix or elasticity matrix and is 
commonly denoted by [ ]C . With the inverse defined, the stress-strain relations become 
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The compliance matrix involves 12 engineering properties. However, these properties are not all 
independent. There are actually only nine independent material properties. So-called reciprocity 
relationships can be established among the extensional moduli and the Poisson’s ratios. As a 
result the compliance matrix is symmetric. To establish these relations, it is convenient to use the 
Maxwell-Betti Reciprocal Theorem. See reference (Ref. 1) for more details.  
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Because of the three reciprocity relations, only nine independent constants are needed to describe 
the linear elastic behavior of a fiber reinforced material.  
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1.1.2  The plane-stress assumption 
 
The plane stress assumption is based on the manner in which fiber reinforced composite 
materials are used in many structures. Specifically, fiber reinforced materials are utilized in 
beams, plates and other structural shapes which have at least one characteristic geometric 
dimension an order of magnitude less than the other two dimensions. In these applications, three 
of the six components of stress are generally much smaller than the other three. In the context of 
fiber reinforced plates, the stress components σ3, τ23 and τ13 are set to zero with the assumption 
that the 1-2 plane of the coordinate system is in the plane of the plate. 
 

 
 

Figure 1.3 : Stresses acting on a small element of fiber-reinforced  
material in a state of plane stress 
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From this relation it is obvious that 
 
 γ23   =   0 and γ13  =  0 
 
so with the plane stress assumption there can be no shear strains whatsoever in the 2-3 and 1-3 
planes. That is an important ramification of the assumption.  
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6
The definitions of the compliances have not changed from the time they were first introduced, 
namely, 
 
 
 
 
 
 
 
 
 
 
The 3 x 3 matrix of com
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2112νν−
  =  66Q 12G

s called the reduced stiffness matrix. 

ption reduces the number of independent constants from nine to four 
G12. The elastic properties of a layer can be determined by mechanical 
hanical models.  



 

 
Literature review 

7
1.1.3  Plane-stress stress-strain relations in a global coordinate system 
 
To this point we have studied the response of fiber-reinforced materials in the principal material 
coordinate system. In the context of composite structures, interesting properties like the total 
deformation, stiffness, etc. are calculated with respect to a global or structural coordinate system. 
Therefore it is necessary to transform the stress-strain relations from the  1-2-3 coordinate 
system into the global x-y-z coordinate system. 
 

 
                             
                             Figure 1.4 (a): element in         Figure 1.4 (b): element in 
                                   1-2-3 system                            x-y-z system 

 
 
Figure 1.4 (a) illustrates an element in the principal material system. Next to it a similar element 
but one that is isolated in an x-y-z global coordinate system. The fibers are oriented at an angle θ 
with respect to the positive x axis of the global system. The fibers are parallel to the x-y plane 
and the 3 and z axes coincide.  
 

 
 

Figure 1.5 : Stress components in x-y-z coordinate system 
 

Figure 1.5 should be interpreted quite literally;  “What is the relation between the stresses and 
deformations for a small volume of material whose fibers are oriented at some angle relative to 
the boundaries of the element rather than parallel to them?”. Loads will not be always applied 
parallel to the fibers. Intuition indicates that unusual deformations are likely to occur. The 
skewed orientation of the fibers must certainly cause unusual distortions of the originally cubic 
volume element. 
 
Transforming the stress-strain relations from the 1-2-3 coordinate system into the global x-y-z 
coordinate system is done using the standard transformation relations for stresses and strains. 
This transformation can be done for a general state of stress. However, in this paper only the 
plane-stress situation is considered and only the final result is stated. More information can be 
found in (Ref. 1). 
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The ijS  are called the transformed reduced compliances. These are defined by  
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where c and s respectively stands for cosθ and sinθ. This equation relate the strains of an element 
of fiber-reinforced material as measured in the x-y-z global coordinate system to the applied 
stresses measured in that coordinate system. Consider that a normal stress xσ  will cause a 
shearing deformation xyγ  through the 16S  term, and similarly a normal stress yσ  will cause a 

shearing deformation through the 26S  term. Equally important, because of the existence of these 
same 16S  and 26S  terms at other locations in the compliance matrix, a shear stress xyτ  will cause 
strains xε and yε . Such responses are totally different from those in metals. This coupling found 
in fiber-reinforced composites is termed shear-extension coupling. 
 
The same techniques can be used to deduce the transformed reduced stiffnesses ijQ . These are 
defined by 
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where c and s respectively stands for cosθ and sinθ. Like the transformed compliances, the 
transformed stiffnesses relate the strains as defined in the x-y-z global coordinate system to the 
stresses defined in that system, and the existence of the 16Q  and 26Q  terms, like the existence of 
the 16S  and 26S  terms, represent shear-extension coupling effects. 
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1.1.4 Classical Lamination Theory: The Kirchhoff Hypothesis 
 
In a typical structural application of a composite, multiple layers of unidirectional composites are 
stacked together at various angles to form a laminate. Some layers may use graphite fibers for 
reinforcement, while others may use glass fibers. Some laminates may consist of three or four 
layers, and some of several hundred layers. Figure1.6 illustrates a global coordinate system and a 
general laminate consisting of N layers. The laminate thickness is denoted by H and the 
thickness of an individual layer by h. It is important that a geometric midplane can be defined. 
Herein the positive z axis will be downward and the laminate extends in the z direction from –
H/2 to +H/2. 

 
 

Figure 1.6 : Laminate nomenclature 
 
It is assumed that all layers are perfectly bonded together. The Kirchhoff hypothesis focuses on 
the deformation of lines which before deformation are straight and normal to the laminate’s 
geometric midsurface. It assumes that despite the deformations caused by the applied loads, such 
an initial line remains straight and normal to the deformed geometric midplane and does not 
change length. Generally there will be a through-thickness strain zε  but the Kirchhoff hypothesis 
is inconsistent with this fact. Fortunately, the assumption that the normal remains fixed in length 
does not enter directly into the use of the hypothesis. 
 
A corollary of the Kirchhoff hypothesis is that the in-plane displacements vary linearly through 
the entire thickness of the laminate, while the normal deflection is uniform through the thickness. 
The superscript o will be reserved to denote the kinematics of points on the geometric 
midsurface or reference surface. 
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With the assumptions regarding the displacement field established by way of the Kirchhoff 
hypothesis, the next step is to investigate the strains that result from the displacements. This can 
be done by using the strain-displacement relations from the theory of elasticity. 
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The equations show that if the reference surface strains and curvatures are known at every point 
within a laminate, then the strains at every point within the three-dimensional volume are known. 
This is an important advantage. Rather than treating a laminate as a three-dimensional domain, 
the analysis of laminates degenerates to studying what is happening to the reference surface, a 
two-dimensional domain. 
 
 
Another important assumption of classical lamination theory is that each point within the volume 
of a laminate is in a state of plane stress. The stress-strain relation for layer k of a laminate 
become 
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The stresses are function of z not only because the strains vary linearly with z but also because 
the reduced stiffnesses vary with z. The reduced stiffnesses vary in piecewise constant fashion, 
having one set of values through the thickness of one layer, another set of values through another 
layer, and so forth. The net result is that, in general, the variation of the stresses through the 
thickness of the laminate is discontinuous. 
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1.1.5  Classical Lamination Theory: Laminate Stiffness Matrix 
 
It is usually more convenient to work with the resultant forces and moments, expressed per unit 
width, than it is to deal with stress components in each individual layer. The stress resultants are 
defined as 
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xN ,  the normal force resultants yN

xyN  the shear force resultants 

xM ,  the bending moment resultants yM

xyM  the twisting moment resultant 
 
Next the stress-strain relations are substituted in the above definitions of the stress resultants. As 
such, one obtains the relationship between the resultants and the reference surface response. 
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The six-by-six matrix consisting of the components ,  and  is called the laminate 
stiffness matrix. For obvious reasons it is also known as the ABD matrix. This form is a direct 
result of the Kirchhoff hypothesis, the plane-stress assumption and the definition of the stress 
resultants. The above matrix equation exhibits a variety of different kinds of coupling. All of the 
B’s represent bending-stretching coupling in general. All quantities with subscripts 16 and 26 
involve normal-shear coupling. This degree of coupling depends strongly on stacking 
arrangement of the laminate. 

ijA ijB ijD

 
Symmetric Laminates 
 
A laminate is symmetric if for every layer to one side of the laminate reference surface with a 
specific thickness, specific material properties and specific fiber orientation, there is another 
layer the identical distance on the opposite side of the reference surface with the identical 
thickness, material properties and fiber orientation. For a symmetric laminate all the components 
of the B matrix are identically zero. Consequently, the full six-by-six set of equations decouples 
into two three-by-three sets of equations, namely 
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Balanced Laminates 
 
A laminate is balanced if for every layer with a specified thickness, specific material properties 
and specific fiber orientation, there is another layer with the identical thickness, material 
properties but opposite fiber orientation somewhere in the laminate. The layer with opposite 
fiber orientation can be anywhere within the thickness. The ABD matrix of a balanced but 
otherwise general laminate is not that much simpler than the ABD matrix of a general laminate. 
The full six-by-six equation applies but with the  and  components set to zero. 16A 26A
 
Cross-Ply Laminates 
 
A laminate is a cross-ply laminate if every layer has its fibers oriented at either 0° or 90°. The six 
equations decouple to a set of four equations and a set of two equations, namely 
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Symmetric Balanced Laminates 
 
A laminate is symmetric balanced if it meets both the criterion for being symmetric and the 
criterion for being balanced. If this is the case, then the equation takes the decoupled form 
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Symmetric Cross-Ply Laminates 
 
A laminate is a symmetric cross-ply laminate if it meets the criterion for being symmetric and 
the criterion for being cross-ply. This results in the simplest form of the ABD matrix. The six 
equations decouple significantly. Specifically, 
 

   =   
⎭
⎬
⎫

⎩
⎨
⎧

y

x

N
N

⎥
⎦

⎤
⎢
⎣

⎡

2212

1211

AA
AA

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

o
y

o
x

ε
ε

 
xyN  =  o

xyA γ66

 

⎭
⎬
⎫

⎩
⎨
⎧

y

x

M
M

 =   ⎥
⎦

⎤
⎢
⎣

⎡

2212

1211

DD
DD

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

o
y

o
x

κ
κ

 
xyM  =  o

xyD κ66

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

14
1.1.6 Laminate Inplane Moduli 
 
The effective engineering properties of a laminate consist of the effective extensional modulus in 
the x direction, the effective extensional modulus in the y direction, the effective Poisson’s 
ratio’s and the effective shear modulus in the x-y plane. These particular effective properties can 
be defined for general laminates but they make the most sense when considering the inplane 
loading of symmetric balanced laminates. To introduce effective engineering properties, define 
the average laminate stress in the x direction, the average laminate stress in the y direction and 
the average laminate shear stress to be, respectively 
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from which the laminate elastic constants are seen to be: 
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Noting that the  matrix consists of [ ]A [ ]Q  matrices from each layer in the laminate, it is obvious 
that the laminate elastic properties are functions of the angular orientation of the plies. This is 
illustrated in figure 1.8 for a typical high-modulus graphite-epoxy system. The layer properties 
are indicated in figure1.7. 
 

    
        Figure 1.7 : Layer properties  Figure 1.8 : Effective elastic properties for 

     high-modulus graphite-epoxy system [ ]sθ±  
 
 
An interesting effect is seen in the variation of Poisson’s ratio. The peak value in this example is 
greater than 1.5. In an orthotropic material, the isotropic restrictions do not hold and a Poisson’s 
ratio greater than one is valid and realistic. 
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1.2 Mechanical behavior of structural elements 
 
 
The structural elements of interest are members with an I-, T- or box section. The elements are 
straight and long, with a small wall thickness compared with the overall cross-sectional 
dimension of the element. These components are often the primary load-carrying members in 
many constructions. Therefore, the knowledge of their stiffness properties is crucial. Stiffness 
properties depend on the material system and the geometry of the cross-section. In first instance, 
structural elements made of homogeneous isotropic material are discussed. This knowledge can 
be used in the design of  fiber-reinforced plastic (FRP) structural members and is discussed next. 
Finally, an overview is given of more advanced theories to calculate the stiffness properties of 
FRP structures.  
 
 
1.2.1  Structural elements of homogeneous isotropic material 
 
The discussion of the behavior of a structural member under any load, starts with the definition 
of the shear center. The shear center Q of any section is that point in the plane of the section 
through which a transverse load, applied at that section, must act if bending deflection only is to 
produced, with no twist of the section. For any section having two or more axes of symmetry 
(rectangle, I-beam, etc) and for any section having a point of symmetry (equilateral triangle, Z-
bar, etc), Q is at the centroid. For any section having only one axis of symmetry, Q is on that axis 
but in general not at the centroid. For such sections and for unsymmetrical sections in general, 
consult reference (Ref. 2). 
 
In describing the mechanical behavior of structural elements, it is necessary to introduce some 
coordinate systems. Often reference is made to a global orthogonal rectangular coordinate 
system xyz. The origin of this system is placed in the centroid G of the section at hand. The x-
axis is directed along the span direction of the beam; the y- and z- axis are the principal central 
axes of the section. Sometimes an additional coordinate system xns is introduced. The x-axis is 
still in the span direction of the beam. The s-axis is directed along the midline of the thickness of 
the section. The n-axis is perpendicular to the x- and s-axis. 
 
 
Bending behavior 
 
The theory of bending is built on the next assumption (Euler-Bernoulli): 
 

Plane cross sections of the beam perpendicular to its neutral line remain plane and 
perpendicular to the neutral line after deformation. Successive cross sections will only 
turn around their neutral line. 

 
This will result in a linear longitudinal strain distribution through the height of the member. As 
an example consider figure 1.9. The structure is loaded by a transverse load  through the shear 
center Q. Therefore the structure will only bend around Gz. The figure also shows the 
longitudinal strain distribution

yV

xε through the height of the beam. The strain xε is almost uniform 
through the thickness of the flanges and is uniform through the thickness in the web.  
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Figure 1.9 : (a) display cross-section; (b) longitudinal strain in web; 
(c) longitudinal strain in flanges 

 
 

For an isotropic material, the linear strain distribution will cause a linear stress distribution 

through the height of the beam, namely 
z

z
x I

yM
=σ . The bending stiffness is defined as E , 

with E the modulus of elasticity and  the moment of inertia of the section with respect to the z-
axis. 

zI

zI

 
The transverse force  will, in addition to normal stresses yV xσ , also induce shear stresses. 
Consider the figure 1.10. 
 

 
 

Figure 1.10 : Coordinate systems used in describing shear stress 
 
The surface of the beam is stress free. Therefore it is assumed that xnσ is zero. In addition, it is 
assumed that xsσ is only function of the coordinate s or: xsσ is constant through the wall thickness. 
By writing the equilibrium conditions of an isolated part of the beam, one obtains a formula for 

the shear stresses, namely 
)(
)(

stI
sSV

z

zy
xs =σ . With the static moment of  the area from the 

spot of the stress

)(sS z

xsσ to the top with respect to z-axis.  
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The next figure shows the distribution of the shear stress due to a transverse force  through the 
shear center Q. 

yV

 

 
 

Figure 1.11 : Shear stress due to transverse force  yV
 
 

Since the shear stress xsσ and the resulting shear strain xsε  is never constant, a plane section can 
never remain plain after deformation. This is illustrated in figure 1.12. 
 
 

 
 

Figure 1.12 : Deformation due to transverse force  yV
 
 
This is in contradiction with the Euler-Bernoulli hypothesis. In practice the problem is solved by 
retaining the assumption that a plane section originally normal to the neutral axis remains plane, 
but this section does not remain normal to the neutral axis. Usually the shear deflection is 
negligible in comparison with the deflection caused by bending.  
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Torsional behavior 
 
The torsional behavior of thin walled structural members is classically divided in two separate 
chapters: open thin walled sections and thin walled hollow or closed sections. This is because 
their behavior is quite different under torsion. 
 

 
 

Figure 1.13 : Torsion of an arbitrary cylinder 
 
 
The essential assumption in the theory of torsion concerning the deformation pattern is: 
 

A plane cross section turns around an axis through the shear center Q, parallel to the 
longitudinal x axis, over an angle x'αα = . The torsional stiffness is defined as 

'α
xM

GJ = , with G the shear modulus, J the torsional stiffness factor, the torque and xM

'α  a constant.  
 
For noncircular bars, the cross sections do not remain plane but warp. All cross sections 
warp in the same manner. 

 
 
This assumption together with equilibrium aspects, leads to a partial differential equation for the 
stress function : ),( zyΦ
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If for a given cross section a function ),( zyΦ can be found which satisfies the differential 
equation and which also satisfies the boundary condition =Φ ),( zy constant along the periphery, 
then the stresses derived from that function ),( zyΦ are the true solution to the torsion problem. 
Prandtl (1903) observed that the differential equation for the stress function is the same 
as the differential equation for the shape of a stretched membrane, originally flat, which is then 
blown up by air pressure from the bottom. This remark gives an extremely simple and clear 
manner of visualizing the shape of the function 

),( zyΦ

),( zyΦ and the stress distribution. 
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Consider open thin walled sections. I Shapes, T shapes , slit tubes and in general sections that 
can be built up of rectangles, all belong to this category. Figure 1.14 shows the stress 
function for an open thin walled section loaded in torsion. ),( snΦ
 

 
 

Figure 1.14 : Stress function ),( snΦ for an open thin walled section 
 
 
The membrane has zero slope in the direction of the s-axis and the slope along the n-axis goes 
from negative over zero (at the top) to positive. The stresses become: 
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The shear stress xsσ is linear distributed through the wall thickness and the torsional stiffness 

factor is equal to ∫=
l

dstJ
0

3

3
1 . Those important quantities are indicated for an I-profile in the 

figure below. 
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Figure 1.15 : Shear stress and torsional constant J for an I-profile 

 
Consider thin walled closed sections. Thin walled closed tubes, circular, elliptic or square and 
even entire airplane wings or fuselages, all belong to this category. Figure 1.16 shows the stress 
function for an  thin walled closed section loaded in torsion. ),( snΦ

 
 

 
 

Figure 1.16 : Stress function ),( snΦ for a closed thin walled section 
 
 
The membrane has zero slope in the direction of the s-axis and the slope along the n-axis is more 
or less constant. The stresses become: 
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The shear stress xsσ is constant through the wall thickness and for sections with a constant wall 
thickness t the shear stress is the same all around. In the above formula A is the area of the entire 
area enclosed by the section and not the cross-sectional area of the material. The torsional 

stiffness factor is equal to 

∫
=

t
ds
AJ

2)(4 . Those important quantities are indicated for a circular 

section in the figure below. 

 
 

Figure 1.17 : Shear stress and torsional constant J for a circular section 
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It was pointed out that when noncircular bars are twisted, the sections do not remain plane but 
warp. The formulas presented so far, are based on the assumption that this warping is not 
prevented. If one or both ends of a bar are so fixed that warping is prevented, the stresses and the 
angle of twist produced by the given torque are affected. In compact sections the effect is slight, 
but in the case of open thin walled sections the effect may be considerable.  
 
To visualize the additional support created by warping restraint, consider an I-beam with one end 
fixed. By applying a torque load, the built-in flanges of the I-beam act as cantilever beams. The 
shear forces developed in the flanges as a result of the bending of these cantilevers will assist the 
torsional shear stresses in carrying the applied torque and greatly increase the stiffness of the bar. 
Hence, the formulas for the torsional stiffness previously presented are modified by a warping 
stiffness factor (Ref. 2).  
 
 
 
Principle of superposition 
 
With certain exceptions, the effect (stress, strain, or deflection) produced on an elastic system by 
any final state of loading is the same whether the forces that constitute that loading are applied 
simultaneously or in any given sequence and is the result of the effects that the several forces 
would produce if each acted singly. 
 
The principle of superposition is used in the general case of a beam of any section loaded by a 
transverse load V in any plane. The solution comprises the following steps: 
 
 

(1) The load V is resolved into an equal and parallel force V’ passing through the flexural 
center Q of the section, and a twisting couple T equal to the moment of V about Q. 

 
(2) V’ is resolved at Q into rectangular components  and , each parallel to a 
principal central axis of the section. 

yV ' zV '

 
(3) The flexural stresses and deflections due to  and are calculated independently 
and superimposed to find the effect of V’. 

yV ' zV '

 
(4) The stresses due to T are computed independently and superimposed on the stresses 
due to V’, giving the stresses due to the actual loading. 

 
 
If there are several loads, the effect of each is calculated separately and these effects added. For a 
distributed load the same procedure is followed as for a concentrated load.
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1.2.2 Structural elements of composite material 
 
 
Most engineers have considerable training and experience in the design of structural components 
using isotropic materials. Laminate inplane moduli xE , yE , xyG and xyν  can be used to take 
advantage of this knowledge for the design of composite structures. However, these moduli are 
independent of the stacking sequence of the layers through the thickness of the laminate. 
Consequently, the inplane moduli are only valid when the strain distribution is more or less 
uniform through the thickness of the laminate. This is further explained in the next  example. 
 
Consider two composite beams with different stacking sequence under a tip force. Assume that 
the deflection at the end of both beams is the same. Consequently, both beams have the same 
linear strain distribution. Because beam (a) has axial plies at top and bottom, it will require more 
force to obtain this strain distribution in comparison with beam (b). Hence, the flexural stiffness 
of both beams is not the same.  
 
 

 

(a) 

(b)  
 
 

Figure 1.18 : Composite beams consisting of  
(a) axial plies at top and bottom, middle plies transverse 

       (b) transverse plies at top and bottom, middle plies axial. 
 
 
It is therefore not correct to use the laminate inplane modulus xE  in the above situation. With 
this modulus both beams have the same bending stiffness, namely xE yI .  
 
In cases where the strain distribution is uniform through the thickness of the laminate, the 
formulas previously derived for structural elements made out of isotropic material are applicable 
to composite structures by using the inplane moduli instead of the isotropic properties. All load 
cases discussed, causes a more or less uniform strain distribution through the thickness of the 
thin walled structure. Torsion of a beam with an open section is an exception. Here the strain 
distribution is linear through the thickness and careful use of xyG  is mandatory. As an example, 
consider a composite beam with a box section subject to a tip load P. 
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Figure 1.19 : Design of a doubly symmetric box section Figure 1.20 : Shear flow distribution 
 
 
 
For a double symmetric section loaded through the centroid, the strain distribution is as shown in 
figure 1.19 . The strain xε is almost uniform through the thickness of the flanges and is uniform 
through the thickness in the web. Therefore, the laminate inplane modulus xE  can be used to 
calculate the bending stiffness xE yI . The transverse load V will cause inplane shear 

deformation. One can use the inplane shear modulus xyG  in calculating the shear stiffness GA. It 
is assumed that the flanges do not contribute to the shear stiffness. Therefore,  A can be taken as 
the area of the webs. If the box section is loaded in torsion, a corresponding shear flow will 
result. Also in this case, it is valid to use the inplane shear modulus xyG  to calculate the torsion 
stiffness GJ, with J the torsional stiffness factor of the section.  
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1.2.3 More advanced theories 
 
 
Three different methodologies have been used in the literature for the evaluation of the stiffness 
coefficients of  composite beam elements. 
 
First, Bert (Ref. 3) proposed beam stiffnesses for rectangular laminated beams based on an 
integration through the thickness of the piecewise-constant lamina longitudinal and shear 
moduli.  
 
Second, stiffness coefficients for laminated beams were proposed by Vinson and Sierakowski 
(Ref. 4) by extending classical laminated plate theory to a simple theory for beams. They derived 
beam stiffness coefficients from the corresponding laminate stiffness coefficients by neglecting 
lateral strains and curvatures. 
 
Third, effective moduli of laminated beams were proposed by Whitney et al. (Ref. 5) and Tsai 
(Ref. 6) from the reciprocals of the corresponding laminate compliances. Barbero et al. (Ref. 7) 
adopted this approach in order to develop a first-order shear deformation theory for thin-walled 
laminated beams. They modeled a thin-walled beam as an assembly of laminated panels with 
stiffnesses characterized by effective beam moduli. 
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1.3  Production process: pultrusion 
 
 
Pultrusion is a continuous manufacturing process used to manufacture constant cross-section 
shapes of any length. Pultrusion is a low-cost process because it achieves direct conversion of 
continuous fibers and resin into a finished part. The fibers are continuously impregnated and 
pulled through a heated die, where they are shaped and cured. 
 
Figure 1.21 shows the simplest pultrusion line. Here, roving and mat are dispensed from the 
creel and mat racks and guided through preforming guides. The preforming guides position the 
reinforcements in the appropriate locations in the cross section of the product, as specified by the 
design. The reinforcements enter dry into the injection chamber where they are wetted by resin 
supplied under pressure. Frequently, the injection chamber is an integral part of the die. The 
cross section of the die gives the final shape to the product. As the wet reinforcement travels 
through the die, the curing takes place aided by the heat supplied by the in-line heaters. As it 
cures, the composite shrinks and separates from the walls of the die, leaving the die as a finished 
product.  
 

 
 

Figure 1.21 : Pultrusion line 
 
 
The cured part is then pulled by reciprocating pullers, synchronized to provide a constant speed. 
The product is therefore continuously produced in virtually infinite length. A moving cutoff saw 
clamps itself to the moving product whenever a preset length of product is available, thus cutting 
the part without stopping the process. 
 
Operational costs of pultrusion are low. The major cost of the process is in equipment, the 
chrome plated dies and the design and tune-up of the guiding system. For these reasons, 
pultrusion is ideally suited for high volume applications. Any type of fibers can be used, but 
glass dominates the market because of cost. Special formulations of various resins have been 
developed fur pultrusion, but polyesters and vinyl esters dominate the market because of cost. 
The main fiber form used is roving and continuous strand mat (CSM), the latter used to provide 
transverse strength and to facilitate production. 
 
Pultrusion has some constraints regarding fiber orientation and content. A minimum of roving or 
longitudinal fibers must be used to be able to pull the product. Fiber volume fraction can seldom 
exceed 45%, with 30% being a more typical value.  
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Chapter Two:  Experimental Modal Analysis (EMA) 
 
 
2.1 Introduction 
 
This chapter focuses on experimental modal analysis (EMA), which is the determination of 
natural frequencies, mode shapes and damping ratios from experimental vibration measurements. 
The subject of modal testing is very broad and strongly depends on the following areas: 
 
   The theoretical basis of vibration 
   Accurate measurement of vibration 
   Realistic and detailed data analysis 
 
No attempt is made to give a comprehensive description of the subject. The interested reader is 
referred to the extensive literature on the subject (Ref. 8). 
 
In the context of this work, the desired output from the modal test are the natural frequencies and 
corresponding mode shapes of the composite beams. This modal data will be used as the 
reference response data during model updating.  
 
The fundamental idea behind modal testing is that of resonance. If a structure is excited at 
resonance, its response exhibits two distinct phenomena. As the driving frequency approaches 
the natural frequency of the structure, the magnitude at resonance rapidly approaches a sharp 
maximum value. The second phenomena of resonance is that the phase of the response shifts by 
180° as the frequency sweeps through resonance. Next figure shows a typical frequency response 
function for a single degree of freedom system. 
 

 

 
 

Figure 2.1 : Single degree of freedom frequency response function 
(log magnitude / phase format). 
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In fact, it is sufficient to measure one “good” frequency response function to obtain the natural 
frequencies of the structure. However, if one is interested in the corresponding mode shapes it is 
necessary to measure multiple frequency response functions.   
 
 
 
2.2 Assumptions  
 
 
There are four basic assumptions that are made in order to perform an experimental modal 
analysis: 
 

1. The structure is assumed to be linear, the response of the structure to any combination 
of forces, simultaneously applied, is the sum of the individual responses to each of the 
forces acting alone. When a structure is linear, its behavior can be characterized by a 
controlled excitation experiment in which the forces applied to the structure have a form 
that is convenient for measurement and parameter estimation rather than being similar to 
the forces that are actually applied to the structure in its normal environment. For a wide 
variety of structures this is a good assumption. 

 
 
2. The structure is time invariant, the parameters that are to be determined are constants. In 

general, a system which is not time invariant has components whose mass, stiffness or 
damping depend on factors that are not measured or are not included in the model. 

 
 

3. The structure obeys Maxwell’s reciprocity, a force applied at degree-of-freedom p 
causes a response at degree-of-freedom q that is the same as the response at degree-of- 
freedom p caused by the same force applied at degree-of-freedom q. With respect to 
frequency response function measurements, the frequency response function between 
points p and q determined by exciting at p and measuring the response at q is the same 
frequency response function found by exciting at q and measuring the response at p. 

 
 

4. The structure is observable, the input-output measurements that are made contain 
enough information to generate an adequate behavioral model of the structure. Structures 
and machines which have degrees-of-freedom of motion that are not measured, are not 
completely observable.    
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2.3  Experimental setup 
 
Obtaining multiple frequency response functions of the test structure at hand, generally requires 
several hardware components. The basic hardware consists of three major items: 
 
 An excitation mechanism 
 A transduction system (to measure the various parameters of interest) 
 An analyzer, to extract the desired information 
 
The next figure shows a typical layout for the measurement system, detailing some of the 
standard items which are usually found. 
 

 
 

Figure 2.2 : General layout of mobility measurement system 
 
 
The structure at hand is freely suspended in space. This is achieved by supporting the structure 
on very soft springs, such as might be provided by light elastic bands. In this configuration the 
suspension system has no significant influence on the natural frequencies. One added precaution 
which can be taken to ensure minimum interference by the suspension on the lowest bending 
mode is to attach the suspension as close as possible to nodal points of the mode in question.  
 

 
 

Figure 2.3 : Suspension system; Acoustical excitation 
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Next consider the excitation system. The physical device may take several forms, depending on 
the desired input and the physical properties of the test structure. The preferred device for the 
composite beams is the electromagnetic exciter also called shaker. A shaker can provide inputs 
large enough to result in easily measured responses. The shaker is attached to the structure 
through a stinger. A stinger consists of a short thin rod running from the driving point of the 
shaker to a force transducer mounted directly on the structure. The stinger serves to isolate the 
shaker from the structure, minimizes mass loading and causes the force to be transmitted axially 
along the stinger, controlling the direction of the applied force more precisely. Acoustical 
excitation is used for small test structures. Irrespective of the excitation method used, the 
structure must be excited in the frequency range of interest. This can be done with a swept 
sinusoidal, random or other appropriate signal. 
 
To construct frequency response functions one has to measure both input force and resulting 
response. The input force is measured with a force transducer. The response in different points is 
measured using a laser vibrometer. More information about this device can be found on 
www.polytec.com. Finally, the measurements are analyzed and frequency response functions are 
obtained.  
 
 

 
 

Figure 2.4 : Laser vibrometer in action 
 
 
 
 
 
 

http://www.polytec.com/
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Remain to extract the modal data from the measured frequency response functions. There are 
several ways in which this can be accomplished (Ref. 8). In this thesis the “peak-picking” 
method is used to obtain the modal data. The method is applied as follows: 
 

(1) individual resonance peaks are detected on the frequency response function plot and the 
frequency of maximum response taken as the damped natural frequency dω of that mode. 

 
(2) The damping ratio associated with each peak is assumed to be the modal damping 

ratio iξ . The modal damping ratio iξ  is related to the frequencies corresponding to the 

two points on the magnitude plot, where 
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The “peak-picking” method is illustrated in figure 2.5 . 
 
 

 
 

Figure 2.5 : (a) Overall FRF; (b) Resonance Detail 
 

 
Experimental measurements of the FRF show that the modal damping ratio’s iξ  have a value 

around 2.6%. For the small damping case ξ < 21 , next equality holds 221 ξωω −=d . The 
error made by working with the undamped natural frequency ω  is minimal for small values of 
modal damping.  
 
Finally, mode shapes can be visualized in the post processing module of the software. Mode 
shapes are saved as avi-files.  
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Chapter Three:  The virtual model 
 
 
 
The finite element method is used to solve physical problems in engineering analysis. The figure  
below summarizes the process of finite element analysis. The physical problem typically 
involves a structural component subjected to certain loads. The idealization of the physical 
problem to a mathematical problem requires certain assumptions that together lead to differential 
equations governing the mathematical model. The finite element analysis solves this 
mathematical model. Since the finite element solution technique is a numerical procedure, it is 
necessary to assess the solution accuracy. If the accuracy criteria are not met, the numerical 
solution has to be repeated with refined solution parameters until a sufficient accuracy is 
reached.   
 

 
 

Figure 3.1 : The process of finite element analysis 
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3.1 Mathematical model 
 
 
The finite element solution will solve the selected mathematical model and all assumptions in 
this model will be reflected in the predicted response. One can not expect any more information 
in the prediction of physical phenomena than the information contained in the mathematical 
model. Hence the choice of an appropriate mathematical model is crucial. 
 
In the context of material identification using modal data, the mathematical model has to reflect 
the properties of the composite beams in sufficient detail. The properties of interest are all mass 
and stiffness related. Consider the main assumptions in the mathematical model. 
 
 
3.1.1 Main assumptions in mathematical model 
 
 
Assumptions on geometry 
 
The structures considered all have a relatively small wall thickness in comparison with their 
other dimensions. Therefore, a plate or shell theory is used to model the behavior of the member. 
The mathematical model do not take into account geometrical details of the physical beams such 
as corner rounds and small holes through the thickness. The small holes are made to suspend the 
structure during experimental modal analysis. The thicknesses of the walls are sufficiently 
constant to justify constant thickness shell elements. 
 
 
Assumptions on kinematics 
 
To start the discussion, the author refers to Chapter One section: Mechanical behavior of 
structural elements. In this section it is illustrated that only the inplane strain components are 
different from zero. This is the case irrespective of the loadcase. Moreover, the inplane strain 
components are uniform or linear distributed through the thickness of the plate. This deformation 
pattern can be described by thin shell small-deflection theory. Membrane and bending effects are 
included and the Kirchhoff hypothesis is the main kinematic assumption. Information about the 
Kirchhoff hypothesis can be found in Chapter One section Classical Lamination Theory: The 
Kirchhoff Hypothesis. 
 
In the small-deflection theory of thin plates the transverse deflections  are uncoupled from the 
in-plane deflections  and . Consequently, the stiffness matrices for the in-plane and 
transverse deflections are also uncoupled, and they can be calculated independently. Hence, in 
the sequel membrane and bending effects are treated separately. 

ow
ou ov

 
The use of thin plate theory does not exclude shear deformation of the structural element. The 
shear deformation of the structural element is due to inplane shear strains. Consequently, it is not 
necessary to include shear strains transverse to the plane as in thick plate theory.  
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Assumptions on material law 
 
The real composite material is modeled as a global homogeneous orthotropic material in the 
mathematical model. Material irregularities and nonuniformities are ignored in the mathematical 
model. An orthotropic material has two lines of symmetry. One line of symmetry is aligned with 
the span direction of the structural element. The other line of symmetry is perpendicular to the 
previous one and lies in the plane of the plate.   
  

 
 

Figure 3.2 : Orthotropic lines of symmetry 
 

 
In this coordinate system the transformed reduced stiffness matrix has the form;  
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The ABD matrix is a result of the Kirchhoff hypothesis, the plane-stress assumption and the 
definition of the stress resultants. This matrix is shown for a laminate with one orthotropic layer 
and thickness H.  
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Composites have ten to hundred times the damping of metals, but the damping is still relatively 
low. Experimental measurements corroborate this statement. As discussed in Chapter Two: 
Experimental modal analysis, the measured modal damping ratio’s iξ  have a value around 2.6%. 
The damping in the system is mainly due to material damping, which is inherent in the material. 
As the largest damping ratio encountered in the present study is only 0.026 or 2.6%, the damped 
natural frequencies should be less than the undamped ones by at most 0.034%. Therefore, 
damping properties of the composite material is not included in the mathematical model.  
 
 
Assumptions on loading and boundary conditions 
 
Natural frequencies and mode shapes depend only on mass and stiffness distribution in the 
structure. No loading is required to calculate this modal data. Boundary conditions have great 
impact on natural frequencies and mode shapes. Boundary conditions influence the stiffness of 
the structure. Boundary conditions are always difficult to model. However, as explained in 
Chapter Two, the physical structure is freely suspended in space. Consequently, free boundary 
conditions are defined in the mathematical model. 
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3.1.2 Formulation of the equation of motion 
 
 
The principle of virtual work for bodies in motion is used to derive the governing differential 
equations. The principle is also known as Hamilton’s principle. It can be applied to both discrete, 
multi-degree of freedom systems and continuous systems. The advantage of this formulation is 
that it uses scalar energy quantities. An additional advantage of the energy method is that it 
contains information concerning the boundary conditions.  
Hamilton’s principle has the form:  
 
 
 

 2t

 
 
where T is the kinetic energy, U 
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.3 : Membrane element lying in xy-plane. 
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The strain energy stored in the element is given by 
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which can be expressed in the following matrix form 
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The constitutive equation for an orthotropic material is, as derived previously, 
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and therefore, 
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In a membrane element the strains are uniform through the thickness of the plate and 
independent of z.  
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Substituting the strain displacement equation in the expression of the strain energy and 
integrating with respect to z gives 
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where A is the area of the middle surface.  
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The kinetic energy of the membrane element is given by 
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where ρ is the mass per unit volume of the material and the superposed dot indicates time 
derivative.  
 
 
If ,  are the components of the applied boundary forces per unit arc length of the 
boundary, then the virtual work is 
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where S denotes the boundary of the element. 
 
 
 
thin plate bending element energy functions 
 
Thin plate bending theory only considers inplane strain components xε , yε  and xyτ . These strain 
components are linear distributed through the thickness H of the plate. The loads considered are 
applied normal to the middle surface. Figure 3.4 shows a thin plate element.  
  

 
 

Figure 3.4 : Plate bending element 
 
 
The strain energy for an orthotropic element, as previously derived: 
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In a plate bending element the strains are linear distributed through the thickness of the plate. 
This can be written as: 
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Substituting the strain displacement equation in the expression of the strain energy and 
integrating with respect to z gives 
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where A is the area of the middle surface. 
 
The kinetic energy of the plate bending element is given by 
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where ρ is the mass per unit volume of the material and the superposed dot indicates time 
derivative.  
 
The virtual work of the transverse loading  becomes zp
 
 ncWδ =  ∫

A

o
z dAwp δ

 
where A denotes the area of the middle surface.  
 
The derived energy functions are substituted into the statement of Hamilton. By doing so, one 
obtains the governing differential equations and the Neumann boundary conditions. The full 
derivation can be found in a book written by Reddy (Ref. 9). Here, the results are stated. 
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The differential equations contain second-order spatial derivatives of (x, y, t) and (x, y, t) 
and fourth-order spatial derivatives of (x, y, t). The classical laminated plate theory is an 
eighth-order theory. This implies that there are eight boundary conditions and that in every point 
of the boundary four conditions [Dirichlet and/or Neumann] must be defined. The boundary 
conditions are defined with respect to a ns coordinate system [Figure below]. 
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Figure 3.5 : Geometry of a laminated plate with curved boundary. 
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The Neumann boundary condition is known as the Kirchhoff free-edge condition. nV
In addition to the boundary conditions, initial conditions are required to solve the differential 
equations. These initial conditions are specified initial deflection and velocity profiles: 
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3.1.3 Solution methods 
 
 
Exact solutions of the governing differential equations can be obtained for certain boundary and 
loading conditions, and circular and rectangular geometries. The Navier solutions can be 
developed for rectangular plates when all four edges of the plates are simply supported. The 
Lévy solutions can be developed for rectangular plates with two opposite edges simply supported 
and the remaining two edges having any possible combination of boundary conditions: free, 
simple support or fixed support. Exact solutions can be found in books by Reddy (Ref. 9) and by 
Timoshenko (Ref 10). 
 
In many practical situations either the geometrical or material properties vary, or it may be that 
the shape of the boundaries cannot be described in terms of known functions. In these situations 
it is impossible to obtain exact solutions of the governing differential equations which satisfy the 
boundary conditions. This difficulty is overcome by seeking approximate solutions which satisfy 
Hamilton’s principle. There are a number of techniques available for determining approximate 
solutions to Hamilton’s principle. One of the most widely used procedures is the Rayleigh-Ritz 
method. This method approximates the solution with a finite expansion of the form  
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where the are unknown generalized coordinates and the trial functions are 
prescribed functions of x and y. A continuous deformable body consist of an infinity of material 
points, and therefore, it has infinitely many degrees of freedom. By assuming that the motion is 
given by the above expressions, the continuous system has been reduced to a system with a finite 
number of degrees of freedom. In this case a n degree of freedom system. 
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If the integrals in the statement of Hamilton involve derivatives up to order p, then the trial 
functions  must satisfy the following criteria in order to ensure convergence of the 
solution. 
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(1) Be linearly independent. 
(2) Be continuous and have continuous derivatives up to order (p −1). 
(3) Satisfy the geometric [Dirichlet] boundary conditions. These involve derivatives up to   
     order (p −1). 
(4) Form a complete series. A series of functions is complete if the ‘mean square error’ 
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The trial solutions ),,(~ tyxu o , ),,(~ tyxv o  and ),,(~ tyxwo  are substituted in the expressions for 
the kinetic energy T, potential energy U and the virtual work done by non-conservative forces 

ncWδ .  Afterwards, the kinetic energy T is only function of  ( j = 1,...,n ) and the strain energy 
U is only function of  ( j = 1,...,n ), that is 
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The work done by the non-conservative forces can be written in the form (Ref. 11) 
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Substituting the above expressions in Hamilton’s principle gives 
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Integrating the first term by parts gives 
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since the jqδ  = 0 at t = t1 and t2.  
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Hamilton’s principle becomes 
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Since the virtual displacements jqδ  are arbitrary and independent, one arrives at the Lagrange’s 
equations: 
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3.2 The finite element solution 
 
 
3.2.1 The Finite Element Method as a generalization of the Rayleigh-Ritz 
         Method 
 
 
When analyzing structures of complex shape, difficulties arise in constructing a set of  trial 
functions  which satisfy the geometric boundary conditions. These difficulties can be 
overcome by using the Finite Element Displacement Method. The main difference between the 
Finite Element Method and the classical Rayleigh-Ritz Method lies in the construction of the 
trial functions.  

),( yxjΦ

 
(1) The trial functions are developed for subdomains into which a given domain is 
     divided. The subdomains, called finite elements, are geometrically simple shapes that 
     permit a systematic construction of  trial functions.  
 
(2) The trial functions are algebraic polynomials developed according to the principle of 
      interpolation. To interpolate is to devise a continuous function that satisfies prescribed 
      conditions at a finite number of points also called ‘nodes’.  Each trial function has a unit   
      value at one node and becomes zero at all other nodes. Hence, the generalized coordinates 
      represent  the value of the trial solution at a node and get important physical meaning.   
 
(3)  The trial functions are the same for each finite element. As a result, the derivation of the 
       stiffness and mass matrices can be carried out very efficiently by first deriving element 
       stiffness and mass matrices and then assembling them into matrices for the whole system.  
 
 
In order to ensure convergence of the solution, the trial functions must satisfy the following 
criteria 
 
(1) Be linearly independent. 
(2) Be continuous and have continuous derivatives up to order (p −1) both within the element 
     and across element boundaries. An element which satisfies this condition is referred to as a 
     ‘conforming’ element. 
(3) The polynomial functions should be complete at least to degree p. If any terms of degree  
      greater than p are used, they need not be complete. The rate of convergence is governed  
      by the order of completeness of the polynomial.  
(4) Satisfy the geometric boundary conditions. 
 
 
In the Rayleigh-Ritz method, convergence is obtained as the number of trial functions is 
increased. To increase the number of trial functions in the finite element method, the number of 
node points and therefore the number of elements is increased.  
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3.2.2 Derivation of element matrices 
 
 
Linear rectangular membrane element 
 
The energy expressions for a membrane element are 
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The highest spatial derivative appearing in these expressions is the first. Hence, it is only 
necessary to take  and  as degrees of freedom at each node to ensure continuity. Also, 
complete polynomials of at least degree one should be used for the trial functions . The 
element trial solutions can be written as 
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The expressions for the element trial solution are substituted in the membrane energy 
expressions, one obtains 
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Thin rectangular plate bending element 
 
The energy expressions for a thin plate bending element are 
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The highest spatial derivative appearing in these expressions is the second. Hence, for 
convergence, it will be necessary to ensure that  and its first derivatives ow xwo ∂∂  and   

ywo ∂∂  are continuous between elements. These three quantities are taken as degrees of freedom 
at each node. Also, complete polynomials of at least degree two should be used for the trial 
functions . The element trial solution can be written as ),( yxN j
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Or written in matrix form 
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The expression for the element trial solution is substituted in the plane bending energy 
expressions, one obtains 
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Facet shell element 
 
In a shell, the element generally will be subject both to bending and to ‘in-plane’ force resultants. 
For a flat element these cause independent deformations, provided the local deformations are 
small. Therefore, the shell matrices can be obtained by combining the membrane and bending 
element matrices. Figure 3.6 illustrates a rectangular facet shell element. 
 

 
 

Figure 3.6 : Geometry of a rectangular facet shell element 
and  local element xyz-coordinate system   

 
The kinetic energy of a rectangular membrane element with four nodes is of the form 
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Each submatrix  is of order (2×2). m
ijm

The kinetic energy of a rectangular plate bending element with four nodes is of the form 
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Combining  and  gives the kinetic energy of the shell element . mT bT ST
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Here each submatrix is of order (5×5) and is of the form 
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Similarly, the strain energy of a facet shell element is of the form 
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The submatrices  and , of order (2×2) and (3×3) respectively, are the appropriate 
submatrices of the membrane and bending stiffness matrices. 

m
ijk b

ijk

 
 
 
3.2.3 Derivation of structural matrices 
 
The element matrices in the previous section are derived in a local element xyz-coordinate 
system. Figure 3.7 shows a typical element coordinate system for a shell element. 

 

 
 

Figure 3.7 : shell element local xyz-coordinate system 
 and global XYZ coordinate system  
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The element coordinate systems are right-handed, orthogonal systems as in figure. The default 
orientation has the x-axis aligned with element I-J side and the z-axis normal to the shell surface. 
The outward direction of the z-axis is determined by the right-hand rule around the element from 
node I to J to K. The y-axis is perpendicular to the x- and z-axis. This convention is also used in 
figure 3.6 . 
 
Orthotropic material input directions are defined with respect to the local element coordinate 
system. When constructing a mesh of the structure, one has to make sure that all element 
coordinate systems are properly aligned conform the convention used in the mathematical model. 
That is, the local x-axis must lie in the span direction of the beam and the local y-axis is 
perpendicular to the x-axis and lies in the plane of the element.  
 
In practice, an analysis is defined with respect to a global coordinate system. The element 
matrices are transformed into expressions involving nodal degrees of freedom relative to the 
common global system. These element matrices are assembled and one obtains the structural 
matrices. The assembly process is based on interelement continuity of primary variables and 
balance of secondary variables. Primary variables are displacements and slopes, secondary 
variables are forces and moments. 
 
Continuity of primary variables is assured at the nodes. Interelement continuity is, however, not 
always assured. A point in case is the plate bending element derived previously. For this element 
the displacement w will vary as a cubic along any x constant or y constant line. The element 
boundaries or interfaces are composed of such lines. As a cubic is uniquely defined by four 
constants, the two end values of slopes and the two displacements at the ends will therefore 
define the displacements along the boundaries uniquely. As such end values are common to 
adjacent elements continuity of w will be imposed along any interface. The gradient of w normal 
to any of the boundaries also varies along it in a cubic way. As on such lines only two values of 
the normal slope are defined, the cubic is not specified uniquely and, in general, a discontinuity 
of normal slope will occur. Elements that violate the continuity of any primary unknowns across 
element boundaries are called ‘nonconforming’. The element, however, passes the patch tests 
and yields good results. 
 
Another point in case concerns the facet shell element. Consider figure 3.8 . In this case, 
continuity of displacement along the common edge between two elements meeting at right 
angles is lost.  The membrane displacement in the vertical element should be equal to the 
bending displacement of the horizontal element. This is not true between nodes since membrane 
displacements vary linearly whilst bending displacements have a cubic variation.  
 

 
 

Figure 3.8 : Hollow box-beam modeled with  
 Facet shell elements. 
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3.2.4 Solving the equation of motion for modal data 
 
 
Finally, one arrives at the governing equation of motion for the discrete system. This equation 
takes the form 
  

[ ]{ } [ ]{ } { })()()( ttt fuKuM =+&&  
 
with 
 
  the structural mass matrix [M]

}
}
}
}

[ ]K  the structural stiffness matrix 
{ )(tf  the force vector in the time domain 
{ )(tu&&  the acceleration vector 
{ )(tu&  the velocity vector 
{ )(tu  the displacement vector 

 
The governing equation represent a system of  n coupled, second-order ordinary differential 
equations in time. With n the number of degrees of freedom of the structure. Each equation 
constitutes a semidiscretization, that is, nodal degrees of freedom { })(tu  are discrete functions of 
space but continuous functions of time. 
 
To study the natural vibrations of the structure, the force vector { })(tf  is identically zero. For a 
structure without damping, all points move in phase with one another and at the same frequency 
ω. Hence, the solution is of  the form { } { }  tsin  )( ωψu =t . The amplitudes{  are independent of 
time and ω is the frequency of vibration. The solution substituted in the equation of motion gives 

}ψ

 
[ ] { } [ ]{ } { }0ψKψM   t sin      t  sin    2 =+− ωωω  

 
or 
 
 

 [ ] [ ]{ }{ } { }0ψMK           2 =− ω

 
What remains is a general eigenv
should have a non-zero solution 
 

[ ] [ ]{ } [       det 2 =− KMK ω
 
This equation can be expanded t
will have n roots , , … , 2

1ω
2

2ω

1ω , 2ω , … , nω  are approximat
 
 
 

 

 
 

alue problem of order n. The condition that these equations 
is that the determinant of coefficients should vanish, that is 

] [ ] 0    2 =− Mω  

o give a polynomial of degree n in . This polynomial equation 
 called ‘eigenvalues’. The quantities

2ω
2

nω
e values of the first n natural frequencies of the system.  
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With each eigenvalue corresponds an eigenvector2ω { }ψ . These vectors are unique only in the 
sense that the ratio between any two components iψ and jψ  is constant. The vector is rendered 
unique by means of a process known as normalization. Here the eigenvector is scaled with 
respect to the global mass matrix of the structure, that is { } [ ]{ } 1  =ψMψ T .  
 
To solve an eigenvalue problem, the approach based on the characteristic determinant is not 
recommended when the number of degrees of freedom is three and higher. Today, a large variety 
of efficient numerical algorithms exists capable of solving eigenvalue problems for systems with 
many degrees of freedom. FEMtools uses a Lanczos subspace method to solve the eigenvalue 
problem. In case of free/free problems (free vibration and no boundary constraints), a minimum 
frequency must be specified to filter out extraction of rigid body modes. 
 
The coefficients of the mass matrices [ ]M  can be lumped into the leading diagonal. This 
procedure reduces the cost of eigenvector calculation for an acceptable loss of accuracy. In this 
case, rotational mass inertia are not taken into account. 
 
 
3.2.5 Sources of error 
 
Results computed by finite element procedures contain error, except in instances where the 
mathematical model is so simple that finite element analysis is unnecessary. By “error” we mean  
disagreement between finite element results and the exact solution of the mathematical model. 
Possible sources of error can be grouped in the following way. 
 
Modeling error 
 
Modeling error refers to the difference between a physical system and its mathematical model. 
What is analyzed is not the actual problem, but its mathematical model, which is a simplification 
in which fine detail of the actual problem is omitted. Details of small holes, geometric 
irregularities and nonuniformity of material properties are ignored. In summary, modeling error 
refers to reasonable and considered approximations made deliberately rather than by mistake. 
 
Discretization error 
  
Discretization error is error introduced by representing the mathematical model by a an finite 
element model. The number of degrees of freedom is infinite in the mathematical model but 
finite in an finite element model. The finite element solution is influenced by the number of 
elements used, the number of nodes per element, the nature of element shape functions and other 
formulation details of particular elements. Discretization error is estimated by comparing 
successive solutions with refined mesh density. More elements will result in a more exact 
solution of the mathematical model. When the difference between successive solutions is 
minimal, the mesh is “convergence”.  
 
Numerical error 
 
Numerical error is the combined result of truncation error and manipulation error. Truncation 
error refers to loss of information due to truncation or rounding of numbers to fit a finite 
computer word length. Manipulation error is introduced as equations are processes.  
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User error 
 
User error refers to mistakes made by the software user after the physical problem has been 
understood, the question to be answered by analysis have been decided and an appropriate 
mathematical model has been created. Included in user error are choosing the wrong general 
element type, choosing poor element sizes and shapes and outright blunders in data input so that 
the model described is not the model intended. One might also include in this category an 
inability to interpret computed results. 
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Chapter Four: Model Updating 
 
 
 
4.1 Principle of model updating 
 
 
To answer this question, let us have a look at what we have discussed already. Chapter Two 
explains the experimental procedure to determine modal properties of a structure. Modal 
properties depend only on mass and stiffness distribution in the structure. To obtain natural 
frequencies , it is sufficient to measure a ‘good’ frequency response. This frequency 
response is analyzed using the peak picking method, resulting in the natural frequencies  of 
the structure. This can be done with minimal effort and cost. Measuring mode shapes 

requires high-tech expensive measuring apparatus such as a laser vibrometer. Most small 
to midsize companies have no disposal of such high-tech measuring equipment. The method 
developed here must be applicable in industry. Consequently, it is assumed that only the natural 
frequencies are known.   

expf

expf

{ }expΨ

expf
 
 
Chapter Three outlines the major steps in developing a virtual model of the structure. Choosing 
an appropriate mathematical model is a first important step. The mathematical model is 
appropriate if it represents mass and stiffness properties of the physical beam in sufficient detail. 
The composite material is modeled as global homogeneous orthotropic material. All other mass 
and stiffness related properties of the physical structure are known and as such implemented into 
the mathematical model. Finally, the model is solved for modal data using finite element 
procedures. The output contains the analytical natural frequencies  with corresponding 
mode shapes { } .  

analytf

analytΨ
 
 
At this moment, two sets of modal data are available. The experimental natural frequencies 

and the analytical natural frequencies  with corresponding mode shapes{ } . 
However, it is highly unlikely that the analytical frequencies will have the same value as the 
experimental frequencies. That is because the virtual model is solved for modal data making use 
of some initial ‘good guessed’ orthotropic properties. The ultimate goal is to modify the 
orthotropic properties in such a way that the analytical frequencies correspond with the 
experimental frequencies. If both models have the same natural frequencies and mode shapes, 
they possess the same global mass and stiffness properties. The process of modifying the 
material properties in such a way that both sets of modal data correspond, is called model 
updating. The principle of model updating is summarized in Figure 4.1 . This chapter gives an 
overview of the most important aspects concerning model updating. 

expf analytf analytΨ
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Figure 4.1 : Principle model updating 
 
4.2 Mathematics of Model Updating 
 
From a mathematical point of view, the difficulty with model updating is that the relation 
between output vector [natural frequencies] and the parameter vector [orthotropic material 
properties] is nearly always non linear. This means that updating the parameter values from an 
initial value to a final value has to be done iteratively. The value of the output for some new 
parameter values can be estimated with a Taylor expansion. The Taylor series can be cut off after 
the linear term or can be cut after some higher order terms. Figure 4.2 illustrates the mathematics 
involved in model updating. 
 

 
Figure 4.2 : Mathematics of model updating 
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The matrix  that appears in the linear Taylor term is called the sensitivity matrix. It contains 
the partial derivatives of the output components for the different parameter values. The success 
of model updating is highly dependant from the numerical condition of the sensitivity matrix 
because  must be inverted in every iteration step to obtain the parameter correction { }. 

[ ]S

[ ]S ∆p
 
Convergency from an initial parameter value { }0p  to the final value is obtained by minimization 
of a cost function in every iteration step. Graphically, this means that the cost function evolutes 
iteratively from an initial point in the (m+1) dimensional parameter space towards a global 
minimum. The parameter values in the global minimum are the optimal parameter values. Figure 
4.3  illustrates the principle. 
 

 
 

Figure 4.3 : Minimizing of cost function 
 
 
One of the most simple cost functions leads to a weighted least squares estimator. In this cost 
function, a weighting matrix [  is pre- and post multiplied with the difference between the 
measured and the computed response in a point in the parameter space. The weighting matrix 

 allows to express a different confidence in the different measured data points. This is 
illustrated in Figure 4.4 . 
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Figure 4.4 : Simple cost function 
 
A more elaborated cost function also takes the initial parameter values into account. A second 
term is added to the cost function in which a weighting matrix is pre- and post multiplied with 
the difference between the initial and the current parameter value. Again, a weighting matrix 
allows to express a different confidence in the different initial parameter values. 
 

 
Figure 4.5 : Cost function 

 
The matrix  represents the weighting matrix expressing the confidence in the model 
parameters, while [  is a weighting matrix expressing the confidence in the reference 
response test data.  

[ ]pW
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4.3 Successful Model Updating 
  
The success of model updating strongly depends on the following considerations. 
 
Accuracy numerical model 
 
A first aspect is the quality of the mathematical model. All known mass and stiffness properties 
must be correctly represented in the mathematical model. Secondly, this model is solved using 
the finite element method. Error due to discretization of the mathematical model is introduced. 
The discretization error must be kept to a minimum. A coarse mesh density is not as flexible as 
the mathematical model with infinite degrees of freedom. Hence, the calculated natural 
frequencies will be overestimated. The model updating will result in physically incorrect 
material properties. Discretization error is estimated by comparing successive solutions with 
refined mesh density. More elements will result in a more exact solution of the mathematical 
model. When the difference between successive solutions is minimal, the mesh is 
“convergence”. The accuracy of the analysis is related to the mesh density. 
 
Experimental error 
 
Incorrect input can not result in physical correct material properties. Experimental error can be 
divided into two categories. Random errors and Systematic errors. The random errors can be 
treated with statistical procedures. Modal analysis software is capable in minimizing random 
errors. Systematic errors are a lot more difficult to detect and to solve. A damaged accelerometer 
will produce systematically an error on his output. Experimental tests on an analytical known 
problem can indicate a systematic error.  
 
Controllability 
 
A numerical model is controllable if it is possible to tune the model output from an arbitrary 
point { }  in the parameter space to a measured point 0y { }expy with the selected parameter set. This 
is further explained in figure (below). 

 
Figure 4.6 : Controllability 
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Non-controllability can be turned into controllability by selecting more or more appropriate 
parameter. A parameter is appropriate if the sensitivity with respect to the response is sufficiently 
high.  
 
Observability 
 
A numerical model is observable if measurement of the output contains sufficient information 
for the identification of the selected parameters. A natural frequency do not contain information 
concerning the color of the structure. It is impossible to identify a color by measuring the natural 
frequency of the structure. Figure 4.7 summarize the definition of observability. 
 

 
Figure 4.7 : Observability 

 
 
Of course, one wants to identify all four orthotropic material properties by measuring a certain 
amount of frequencies. Unfortunately, depending on the structure, not every parameter will be 
identifiable. To investigate observability, FEMtools offers sensitivity sum curves. Such a curve 
sums all sensitivity values for all responses as a function of parameter number. A low sensitivity 
sum value shows that none of the responses contains sufficient information for the identification 
of that parameter. If this occurs, one can add more experimental measurements or conclude that 
the parameter in question can not be identified by frequency measurement. 
 
Initial parameter values 
 
Model updating requires initial parameter values { }0p . The quality of the initial parameter values 
can effect both the speed of convergence and whether or not convergence to the ‘true’ 
parameters is achieved. The parameter estimation problem is often posed as a problem of 
constraint minimization and in the case of non-linearity in parameters, a particular minimum is 
sought on a surface which contains many minima and maxima. Usually either a local minimum 
is sought, when there is confidence in the initial model, or else the problem is to determine the 
unique global minimum.  
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At the Vrije Universiteit Brussel Professor Hugo Sol has developed a method which can detect 
orthotropic material properties of a layered plate. The Resonalyser Method makes use of  
experimental measured frequencies to tune a corresponding numerical model. It is in fact also a 
mixed numerical experimental method. More information about this test can be found in the 
addendum. However, the Resonalyser uses a plate of material. Only small plates could be 
prepared because of  the minimal width of the structures. In practice, small plates are not ideal to 
obtain initial parameter properties.   
 
To obtain initial values for the longitudinal moduli  and , the first bending frequency of  a 
beam specimen is determined. To identify  a beam model in the span direction of the structure 
is used. No limit on the length of this specimen. Identification of  uses a specimen in the 
width direction of the structure. The length of this specimen is restricted by the width of the 
structure. The most ideal manner to excite this kind of specimen is by means of acoustical 
energy. Figure 4.8 shows a beam specimen during EMA. 

xE yE

xE

yE

 
 

 
 

Figure 4.8 : EMA conducted on beam specimen 
to obtain initial parameter values 

 
 
Knowledge of the bending frequency and dimensions of the specimen renders the elastic 
modulus of the material.  The formula used to estimate the elasticity modulus (Ref. 12): 
 

 
 
 
 
 
 
 
 
 
 

E  =  7.89e-2 * (frequency)2 * (length)4 * density * transverse_section *  
        (moment of inertia) –1
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4.4 Model updating using FEMtools 
 
 
Sensitivity calculation 
 
The matrix  that appears in the linear Taylor term is called the sensitivity matrix. It contains 
the partial derivatives of the output components for the different parameter values. There are two 
basic approaches to compute sensitivities: (i) using differential sensitivities and (ii) using a finite 
difference approximation. Which one to use depends on the parameter type. For non-
proportional parameters, such as the Young’s modulus for orthotropic materials, FEMtools uses 
finite difference sensitivities. In this method derivatives are approximated with a forward finite 
difference approach. This is done using the results of two finite element analysis for two states of 
the parameter . The element ij of the matrix 
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jp [ ]S  becomes 
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The sensitivities discussed so far are absolute sensitivities. This means that they use the units of 
the response and parameter value. The absolute sensitivities can be made independent of the 
units used for the response and parameter values. They are then referred to as normalized 
sensitivities. A normalized sensitivity shows the percentage change of the response value for one 
percent change of the parameter value. The element ij of the matrix [ ]nS  can be written as 
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Mode shape pairing 
 
During model updating, the algorithm will try to drive the predicted analytical response to the 
experimental reference data in the test database. This implies that the algorithm knows which 
analytical response has to match with which experimental response. This can be defined using 
sequential mode shape pairing. Sequential mode pairing means that analytical mode 1 will be 
paired with experimental mode 1, analytical mode 2 with experimental mode 2, etc. If during 
model updating a switch of mode shapes occur, this method fails. The resulting frequencies will 
probably be close but the mode shapes are different. There is no possibility to connect a mode 
shape to a particular experimental reference response. 
 
To deal with the above problem, the program will copy the analytical frequencies, predicted by 
the initial values for parameters , ,  and  , to the test database. The user of the 
program knows exactly the sequence of these modes [the program will previously show them]. It 
is now up to the user to connect the correct experimental reference frequency with the 
corresponding mode shape. In other words, the test database must reflect the correct physical 
response [natural frequency with corresponding mode shape]. Automatic mode shape pairing 
can now be used to drive the analytical response to the experimental reference response in the 
test database.  

xE yE xyG xyv
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During model updating, automatic mode shape pairing makes a relation between those 
frequencies which have the highest Modal Assurance Criterion (MAC). The MAC is a measure 
of the squared cosine of the angle between two mode shapes. To compute the MAC between an 
analytical and experimental mode shape, the following equation is used: 
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After model updating, a MAC value can be calculated between the updated fem model and the 
physical test modal. If no mode switch occurred during model updating this MAC matrix is a 
diagonal matrix. 
 
Aspects of convergence 
 
CCABSOLUTE: Average value of weighted absolute relative differences between predicted and   
                            reference resonance frequencies. 
 
CCMEAN: Average value of weighted relative differences between predicted and reference  
                   resonance frequencies. 
 
In model updating, the above correlation coefficients are interpreted as an objective function that 
needs to be minimized. With each iteration loop the values of the correlation coefficients will be 
verified to check if a convergence criterion is satisfied. The following criteria are used: 
 

(1) The value of the reference correlation coefficient is less than an imposed margin: 
 

CCt < 1ε  
 where: 
            CCt Reference correlation coefficient at iteration t 
  ε  Convergence margin 
 

(2) Two consecutive values of the reference correlation coefficient are within a given 
margin. 

21 ε<−+ tt CCCC  
 
The iteration loop in model updating will be stopped as soon as one of these tests is satisfied. 
 
Default values for 1ε  and 2ε are used namely 0.08  
Default values are also used for weighting coefficients and other settings 
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Chapter Five: Outline program 
 
5.1 Flowchart program 
 

 
 
 
 

 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
         
 
  
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Model Update 
 

Modified fem model is shown. 
Reference “physical” test model is shown. 
MAC-matrix fem versus test is shown. 
 
Correlation tracking curve is shown. 
 
Modified Material Properties listed. 

Fem database contains: 
 
First N {freq}analyt
 
First N {ψ}analyt
 
Initial Material Properties 

Test database contains: 
 
N experimental frequencies {freq}exp
 
First N {ψ}analyt
 
Corresponding with “physical” model

Obtain converged mesh with respect to first ten frequencies {freq}analyt.  
The frequencies {freq}analyt are based on initial material properties. 
 
The ten {freq}analyt and {ψ}analyt are shown.            
The sensitivity matrix material properties versus frequencies {freq}analyt are shown. 
The sensitivity sum curve material properties vs frequencies {freq}analyt are shown. 
Convergence check matrix is shown. 
 
Determine how many N response frequencies {freq}exp are taken into account. 
Determine which material properties are identified. 

No Successful 
Identification 

Successful Identification

Input Resonalyser 
Initial Material Properties 

Check Geometry not ok.
New Input Geometry 

  Input Geometry 
  Check Geometry 

 
Outline program 



 65

5.2 Input box “Define Geometry Beam” 
 
This graphical user interface (GUI) is used to define the cross section and the length of the beam. 
Arbitrary open and multi-celled closed cross sections can be constructed. The cross section is 
defined by a series of rectangular segments. The segments are input such that they make a 
continuous outline of the cross section – the end point of one segment is the beginning point of 
the next segment. Segments may be given a zero thickness in order to backtrack over previously 
defined segments to continue the outline. The thickness in (X coord, Y coord, Thickness) is the 
thickness of the segment that is defined by this point and the previous point. 
The thickness of the first point is therefore not used. 
 

 
Figure 5.1 : GUI Define geometry beam 

 
Input Restrictions: 
 

Zero thickness (backtrack) segments must follow the original geometry. They cannot 
enclose an area. 

 
No backtrack possible to point (0, 0).  

 
A straight zero thickness line must have the same number segments as the original 
straight line. 

 
A single straight line cross section is permitted. 

 
Multiple celled closed sections (such as a double box beam) are allowed. 

 
 Thickness must be a positive number (including zero). 
 
 Length of the beam must be a positive number (excluding zero). 
 
 Segment point 1 and segment point 2 cannot have the same coordinates.  
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When these restrictions are not met, the program will stop and indicate the problem.   
 
The best way to become familiar with the interface is to study the next two example inputs. One 
input concerns an arbitrary open cross section, the other is an arbitrary closed cross section.  
 
 

 

16 mm

40 mm

20 mm

3 mm

3.6 mm

2 mm

2 mm

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  X coord Y coord Thickness 
Segment point 1 0 0   
Segment point 2 19 0 2 
Segment point 3 19 42,5 2 
Segment point 4 19 60 3,6 
Segment point 5 19 42,5 0 
Segment point 6 10 42,5 3 
Segment point 7 0 0 0 
Segment point 8 0 0 0 
Segment point 9 0 0 0 

Segment point 10 0 0 0 
        

Length 400     
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18 mm

48 mm

40 mm

1.6 mm

60 °
3 mm

3 mm

3.6 mm

3.6 mm

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  X coord Y coord Thickness 
Segment point 1 0 0   
Segment point 2 44,7 0 3 
Segment point 3 44,7 43,3 3 
Segment point 4 44,7 63,1 1,6 
Segment point 5 44,7 43,3 0 
Segment point 6 25 43,3 3,6 
Segment point 7 0 0 3,6 
Segment point 8 0 0 0 
Segment point 9 0 0 0 

Segment point 10 0 0 0 
        

Length 600     
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When the input is accepted the program will calculate a characteristic element length.  
The characteristic length determines the size of the elements in the initial mesh. To calculate the 
characteristic element length it is assumed that the area of one element is ten times the mean 
thickness.  
 
 

Area element = 10 x mean thickness 
Span element x width element = 10 x mean thickness 

 
 
The structures of interest are slender beams for which the length is much greater than the width. 
Therefore the span of an element is twice the width of the element. 
 
 

2 x (width element)2 = 10 x mean thickness 
Width element = sqrt (10 x mean thickness / 2) 

 
 
Finally this result in the next expression for the characteristic element length. 
 

 
Char_length = 2 x sqrt(10 x mean thickness / 2) 

 
 
Working with a characteristic element length results in an uniform mesh. All elements are 
rectangular in shape (aspect ratio 0.5) and have more or less the same dimensions, that is: 
 

 

 
             ↑  
                                                  char_ 
                                                 length        
 
             ↓ 
                                                  ←   2 * char_length   → 
 
 
To illustrate the procedure, look at the input of the first profile. The mean thickness equals: 
 
 

Mean thickness = 
4

36.322 +++  

Mean thickness = 2.65 
Char_length = 7.28 

 
 

The line with points (0, 0) and  (19, 0) has a length of 19 mm. Consequently, 19 / 7.28 = 2.6 and 
two elements with a width of 9.5 mm are constructed. The line with points (19, 0) and (19, 42.5) 
has a length of 42.5 mm. Consequently, 42.5 / 7.28 = 5.8 and five elements with a width of 8.5 
mm are constructed. The length of the beam equals 400 mm. Consequently, 400 / (2x7.28) = 
27.4 and twenty-seven elements with a length of 14.8 mm are constructed. This can be verified 
in the next figure. 
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Figure 5.2 : Visual inspection geometry 

 
 
 

The mean thickness has direct impact on the characteristic element length. When the mean 
thickness increases the characteristic element length will also increase. The situation can occur 
that the mean thickness and consequently the characteristic element length become too large to 
construct elements in a certain area. In this case the program will show the message   “Shell 
model is probably not appropriate”.  
 
 
After the geometry input one has the possibility to visual check the input data. If the input is 
successful the user can go to the next step by pushing the button “Proceed”. For new input click 
the button “New Input”. The “Cancel” button will clear the database and stop the program. The 
“Visual Inspection Geometry Box” is shown in the figure above.  
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5.3 Input box “Inputmenu Resonalyser” 
 
 
This input box will ask initial values for the next properties: 
 
 Ex modulus length direction beam  [N/mm2] 
 Ey modulus width direction beam   [N/mm2] 
 Gxy shear modulus in the xy plane  [N/mm2] 
 Nuxy major poisson’s ratio  [ ] 
 
The use of Poisson’s ratios for orthotropic materials sometimes causes confusion, so that care 
should be taken in their use. In practice, orthotropic material data are most often supplied in the 
major Poisson’s ratio format or, 
 

XE
Nuxy  = 

YE
Nuyx  

 
To estimate good initial values one can use the Resonalyser procedure. For more details about 
the Resonalyser device see reference. 
 
The mass density is also required at this stage. In fact this is not an initial value because the mass 
density is not a parameter during model updating. Consequently, this exact value will be used 
during model updating. 
 
Input Restrictions: 
 
 The elastic properties and the mass density must be positive values 
 
 The poisson’s ratio must lie between 0.01 and 1.5 
   
 

 
Figure 5.3 : Inputmenu Resonalyser 
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5.4 Generate converged mesh 
 
 
This step requires no extra input and is not directly visible to the user. A finite element analysis 
implies different kind of assumptions. One significant assumption that can be addressed only 
after a run is the assumption that the mesh was sufficient to capture the behavior of interest. An 
initial mesh must typically be refined multiple times to accurately capture this behavior. The 
process of successive mesh refinement to produce the optimal results is called convergence. The 
importance of a converged mesh cannot be overemphasized.   
 
Natural frequencies are used as reference response during model updating. Therefore the 
accurate prediction of natural frequencies is of prime importance.  
 
To obtain a converged mesh the program calculates the first ten natural frequencies of the 
structure at hand. This calculation is done with the initial mesh size. This result is stored in the 
first column of the matrix freq_monitor. Next the characteristic element length is divided by two. 
Consequently, the initial mesh is refined by a factor two. This refined mesh is used to calculate 
the first ten natural frequencies. This result is stored in the second column of the matrix 
freq_monitor. This process will go on until the difference between succeeding results is minimal. 
In the context of this work, minimal takes the value of 1 pro cent.    
 
 
To illustrate the process, consider the next figures. 
 

 
Figure 5.4 : Initial mesh 
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Figure 5.5 : Converged mesh 

 
 
 
 
The next table shows the succeeding results. 
 
Matrix freq_monitor Initial mesh Refined mesh  Refined refined mesh 

freq 1 158,3 158,2 158,2 
freq 2 266,1 264,9 264,6 
freq 3 602,9 600,5 600 
freq 4 624,1 619,1 617,6 
freq 5 1126 1113 1109 
freq 6 1321 1320 1320 
freq 7 1343 1345 1345 
freq 8 1350 1351 1351 
freq 9 1398 1391 1389 
freq 10 1623 1626 1627 

Matrix freq_monitor: values 
 

 
Difference between two red values is higher than 1 pro cent. Therefore the refined mesh is 
refined again.  
 
 
The matrix freq_monitor is also available as matrix bitmap. 
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Figure 5.6 : Matrix freq_monitor: matrix bitmap 

 
 
 
 
5.5 Check Sensitivity Box 
 
 
Here the program will supply the user with the following information: 
 
(1) first ten natural frequencies {freq}analyt and corresponding mode shapes{ψ}analyt
(2) the sensitivity matrix material properties versus frequencies {freq}analyt
(3) the sensitivity sum curve material properties versus frequencies {freq}analyt
(4) the convergence check matrix 
 
These results are very useful. First, the output shows which mode shapes occur based on initial 
material properties. This information can be used during EMA.  
 
The sensitivity matrix material properties versus analytical frequencies shows which 
parameter(s)  can be identified by measuring the first natural frequencies of the structure.  
The sensitivity sum curve contains similar information. 
 
The above information must give an answer to the next questions: 
 

How many N response frequencies {freq}exp are taken into account? 
 
Which material properties can be identified? 
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5.6 Input box “Tune InputBox” 
 
 
This input box asks for the N reference response data {freq}exp. Remember that the analytical 
mode shapes based on initial material properties are copied to the test database. It is important 
that the frequencies {freq}exp correspond with the correct analytical mode shapes in the test 
database. Hence, the test database reflects the behavior of the physical structure. 
 
A checkbox is available to indicate which material property will be treated as parameter during 
the identification. 
 
From here the model updating can be launched.  If the identification is done the program gives 
the updated values for the parameter(s). There is also an indication concerning convergence 
[CCABS and CCMEAN]. Both the fem model and test model are shown and one can investigate 
the correlation between the two models. If mode switching occured during the update process, 
the MAC matrix is not diagonal any more. 

 
Outline program 



 75

Chapter Six: Application of the program 
 
 
 
All the tools and issues discussed in the previous chapters, are brought together in this chapter. The 
ultimate goal is to identify global effective orthotropic material properties by measuring natural 
frequencies of the structure at hand.  
 
As a first test, the program is used to estimate the isotropic material properties of a steel beam. Initial 
values are input which deviate from the standard properties of steel. Natural frequencies are calculated 
based on the standard material properties of steel. If the program works properly, correct steel properties 
must result. 
 
In the sequel, the program is employed to identify global effective orthotropic material properties of four 
composite profiles. There is one closed box profile and three open profiles in the set of four. Initial values 
for  and  are determined in the manner explained previously. No initial values are available for the 
shear moduli  and Poisson coefficient . Common values are applied instead. Natural frequencies and 
corresponding mode shapes are measured using a laser vibrometer. To keep the text readable, the mode 
shapes, based on initial material  properties, calculated by the program are placed in addendum. For the 
same reason, experimental measured mode shapes can be found in addendum.   

xE yE

xyG xyv

  
The purpose is to identify all four orthotropic material properties. However, in view of practical 
applications, one is mainly interested in the effective properties and . The knowledge of these values 
result in the longitudinal bending stiffness and the torsional stiffness of the beam. Properties of major 
importance in practical design. 

xE xyG

 
The same convention is used for coordinate system and area properties as in Chapter One: Mechanical 
behavior of structural elements. Reference is made to a global orthogonal rectangular coordinate system 
xyz. The origin of this system is placed in the centroid G of the section at hand. The x-axis is directed 
along the span direction of the beam; the y- and z- axis are the principal central axes of the section. The 
position of the shear center is indicated with Q.  
 
The sensitivity matrix shows the sensitivities of  four parameters versus  ten responses. Here the next 
convention is used: 
 

Parameter 1:  xE
Parameter 2:  yE
Parameter 3:  xyG
Parameter 4:  xyv
 
Ten responses: first ten analytical frequencies {freq}analyt based on initial material  
                         properties. 
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6.1 Closed box profile made out of steel  
 
 
As a first test, the program is used to identify the material properties of steel. Known analytical solutions 
are available to calculate the bending and torsional natural frequencies of beams [Ref Inman]. These 
frequencies are used as reference response in the program. A perturbation of 25 % is given to the material 
properties of steel. These values are used as initial material properties in the program. Consider the next 
profile section. 

 
63 mm 

73 mm 

6.3 mm

6.3 mm

8 mm 8 mm 

 
 
Section properties 
 
Dimensions according to figure (above) 
Moment of inertia : 998544 mmyI 4 

Moment of inertia : 1179306 mmzI 4

Torsional stiffness factor J : 1393340 mm4 

Length: 2000 mm 
 
 
Reference properties of steel 
 
E : 210 000 N/mm² 
G : 84 000 N/mm² 
v : 0.25 
Density: 7.87e-9 Mg/mm3
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Reference response data 
 
The formula to calculate bending frequencies of a beam can be written as: 
 

 2
 
 
where 
 nω is the nthe angular natural freq
 nβ are known numerical values [
 E is the elasticity modulus of ste

 ρ is the density of steel 
       A is the cross sectional area of t

 
This formula applied to the box beam, r
 
 

Bending 
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3
5

 
 
 
The formula to calculate torsional frequ
 
 
 
 
 
 
where 
 nω is the nthe angular natural freq

 polarIGJc ρ=  ,G the shear mo
                                        ρ is the density
 l is the length of 2000 mm of the
 
This formula applied to the box beam, r
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s of steel, J the torsional stiffness factor of the section, 
eel, Ipolar the polar moment of area of the section 
 

 in the next reference frequencies. 
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Initial values           
  
A deviation of 25 % is given on the known properties of steel. This result in the next initial values. 
 

Material
Property 

Initial value 
[N/mm²] 

Ex 157500 
Ey 180000 

Gxy 63000 
Vxy 0,25 

 
 
 
Results modal updating 
 

Initial values 
 [N/mm²] 

Parameter 
 selection 

 Fem data based on initial 
 values versus Exp. data [Hz] 

Mode 
switch 

Difference initial  
 final values [%] 

Final parameter 
 values [N/mm²] 

Ex Ey Gxy Vxy Ex Ey Gxy Vxy Fem
value  

Exp.
 value

Description 
 mode Yes No CCABS CCMEAN Ex Ey Gxy Vxy

157500 180000 63000 0.25 X   X   93 109,5 1bending Y-axis   X 14 // 1  - 14 // O 218557 180000 80709 0,25
                102 119 1bending Z-axis                 
                252 302 2bending Y-axis                 
                276 328 2bending Z-axis                 
                481 560 3bending Y-axis                 
                528 612 3bending Z-axis                 
                606 685,8 1 torsion                  

 
 
The updated values for  and  show good correspondence with the target values of respectively 
210000 N/mm² and 84000 N/mm². A deviation of 25 % is reduced to a deviation of respectively 4.1 % and 
3.9 %.   

xE xyG
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6.2 Closed box profile 
 
 
Section properties 
 
Dimensions according to figure (below) 
Moment of inertia : 998544 mmyI 4 

Moment of inertia : 1179306 mmzI 4

Torsional stiffness factor J : 1393340 mm4

 
 

 
63 mm 

73 mm 

6.3 mm

6.3 mm

8 mm 8 mm 

 
 

Volume properties 
 
Volume : 2587494 mm3 

Mass : 5132 gram 
Density : 1.995e-9 Mg/mm3

Length : 1470 mm  
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Input geometry 
 
 

  X coord Y coord Thickness 
Segment point 1 27.5 -33.35   
Segment point 2 27.5 33.35 8 
Segment point 3 -27.5 33.35 6.3 
Segment point 4 -27.5 -33.35 8 
Segment point 5 27.5 -33.35 6.3 

        
Length 1470     

 
 
Estimation initial values 
 
An initial value for  is obtained using the Resonalyser procedure. An initial value for  could not be 
obtained because the thickness versus width of the profile is too high. Typical engineering properties of a 
glass-polymer composite are used instead for ,  and  (Ref. 1). The  

xE yE

yE xyG xyv
initial values are 
 

  Initial value  
(N/mm²) 

Method used  
to obtain value 

Ex 35000 Resonalyser 
Ey 16000 Literature 
Gxy 5000 Literature 
vxy 0,3 Literature 

 
 
 
Experimental natural frequencies 
 
Two different planes of the beam are measured. First the shaker is attached to a small plane of the beam  
and the laser measured the response of the opposite small plane. These results can be found in column 
Box_LaserMeasuredOnSmallPlane. Next the shaker is attached to a large plane of the beam and the 
laser measured the response of the opposite large plane. These results are shown in column 
Box_LaserMeasuredOnLargePlane. The results with corresponding mode shapes are included in 
addendum. 
 
 
Box_LaserMeasured 
OnSmallPlane [Hz] 

Description mode 
shape  Box_LaserMeasured

OnLargePlane [Hz] Description mode shape

180 1 bending mode Z-axis  166,9 1 bending mode Y-axis 
471,3 2 bending mode Z-axis  428,8 2 bending mode Y-axis 
543,1 1 torsion mode  543,8 1 torsion mode 
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Check sensitivity box: program output 
 
The Check sensitivity box is definitely the most useful part of the program. It gives information about 
frequencies and mode shapes based on initial material properties. Moreover, the sensitivity matrix is 
shown. One can investigate if the first ten frequencies contain sufficient information for the identification 
of all four parameters. Additional, a sensitivity sum curve is shown. A low sensitivity sum value shows 
that none of the responses was sensitive to the parameter change. This means that the parameter is 
ineffective for all responses and should not be included in the selection for model updating.  
 
The results are summarized in the next table and figures. 
 

  {freq}analyt based on initial 
material properties [Hz]  Description modeste 

Mode 1 157 1 bending mode Y-axis 
Mode 2 172 1 bending mode Z-axis 
Mode 3 399 2 bending mode Y-axis 
Mode 4 444 2 bending mode Z-axis 
Mode 5 466 1 torsion mode 
Mode 6 701 3 bending mode Y-axis 
Mode 7 797 3 bending mode Z-axis 
Mode 8 929 2 torsion mode 
Mode 9 1024 4 bending mode Y-axis 
Mode 10 1192 4 bending mode Z-axis 

 
      

 

 
 
 
 
 
 
 
 
 
 
 
 

The initial values are quite good in the sense that predicted mode shapes correspond with measured ones. 
The calculated modal data do not indicate closely spaced modes. Although the first torsion mode is in the 
neighborhood of the second bending around Z-axis. 
 
It is immediately clear that  and can not be identified by measuring frequencies of the structure. The 
advantage is that values found in literature can be used as initial values, since they have minor influence 
on the output.   

yE xyv

 
The first four modes contain information with respect to . The fifth torsion mode is very sensitive for a 
change in value of . It is therefore logical to use the first five measured frequencies as reference 
response.  

xE

xyG
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Model Updating results 
 
 

Initial values 
 [N/mm²] 

Parameter 
 selection 

 Fem data based on initial 
 values versus Exp. data [Hz] 

Mode shape 
switch occur 

Difference initial  
 final values [%] 

Final parameter 
 values [N/mm²] 

Ex Ey Gxy Vxy Ex Ey Gxy Vxy Fem 
 value

Exp.
 value

Description 
 mode Yes No CCABS CCMEAN Ex Ey Gxy Vxy

35000 16000 5000 0,3 X   X   157,4 166,9 1 bending Y   X 7,5 / 0,5 7 / 0 38466 16000 6819 0,3
                172,4 180 1 bending Z                 
                398,6 428,8 2 bending Y                 
                444,3 471,3 2 bending Z                 
                465,8 543,4 1 torsion                 

 
 
Model Updating results: deviation on initial values 
 

Initial values 
 [N/mm²] 

Parameter 
 selection 

 Fem data based on initial 
 values versus Exp. data [Hz] 

Mode shape 
switch occur 

Difference initial  
 final values [%] 

Final parameter 
 values [N/mm²] 

Ex Ey Gxy Vxy Ex Ey Gxy Vxy Fem 
 value

Exp.
 value

Description 
 mode Yes No CCABS CCMEAN Ex Ey Gxy Vxy

42000 16000 4000 0,3 X   X   170 166,9 1 bending Y   X 6,5 / 0,5  - 4 / 0 38467 16000 6819 0,3
                187 180 1 bending Z                 
                416.6 428,8 2 bending Y                 
                416.9 543,4 1 torsion              
                469 471,3 2 bending Z                 

 
 

Initial values 
 [N/mm²] 

Parameter 
 selection 

 Fem data based on initial 
 values versus Exp. data [Hz] 

Mode shape 
switch occur 

Difference initial  
 final values [%] 

Final parameter 
 values [N/mm²] 

Ex Ey Gxy Vxy Ex Ey Gxy Vxy Fem 
 value

Exp.
 value

Description 
 mode Yes No CCABS CCMEAN Ex Ey Gxy Vxy

28000 16000 6000 0,3 X   X   142 166,9 1 bending Y   X 12 / 0.5 -12 / 0 38467 16000 6819 0,3
                155 180 1 bending Z                 
                369 428,8 2 bending Y                 
                408 471,3 2 bending Z                 
                510 543,4 1 torsion                 
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6.3  SymmetricU-profile 
 
 
Section properties 
 
Dimensions according to figure (below) 
Moment of inertia : 439635 mmyI 4 

Moment of inertia : 251905 mmzI 4

Torsional stiffness factor J : 1990 mm4

 
 

 

19 mm 

3.18 mm 
3.18 mm 

3.18 mm 

63.5 mm

65 mm 
26.5 mm 

 
 
 
 
Volume properties 
 
Volume : 867793 mm3 

Mass : 1599 gram 
Density : 1.8426e-9 Mg/mm3

Length : 1470 mm  
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Input geometry 
 
 

  X coord Y coord Thickness 
Segment point 1 0 0   
Segment point 2 0 61.91 3.18 
Segment point 3 -61.82 61.91 3.18 
Segment point 4 -61.82 0 3.18 

        
Length 1470     

 
 
 
Estimation initial values 
 
The initial values for  are obtained by measuring the first bending mode of beam specimen in the span 
direction of the structure. Initial values are obtained by measuring the first bending mode of a beam 
specimen in the width direction of the structure. Results are summarized in next table. 

xE

yE

 
 

Name 
Dimensions  

(widthxlengthxthickness) 
 [mm] 

Mass 
 [ton] 

Volume 
[mm³] 

Density
 [ton/mm³]

Transverse
 section 
 [mm²] 

Moment 
of inertia 
 [mm4] 

Frequency 
first bending 
 mode [Hz] 

Elasticity
Modulus
[N/mm²] 

X spec1 20,3 x 182 x 3,2 21,2 e-6 11823 1,8 e-9 65 55,4 342,5 21447 

X spec2 19,5 x 182 x 3,2 21,0 e-6 11357 1,9 e-9 62,4 53,3 341,3 22431 

         

Y spec1 20 x 56,9 x 3,2 6,7 e-6 3642 1,8 e-9 64 54,6 2523 11108 

Y spec2 20 x 56,3 x 3,2 6,7 e-6 3603 1,9 e-9 64 54,6 2667 12557 

 
 
Typical engineering properties of a glass-polymer composite are used for  and  (Ref. 1).  xyG xyv
The initial values are 
 
 

  Initial value  
(N/mm²) 

Method used  
to obtain value 

Ex 22000 Resonalyser 
Ey 11800 Resonalyser 
Gxy 5000 Literature 
vxy 0,3 Literature 
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Experimental natural frequencies 
 
The shaker is attached to the upper plane [65x1470] of the beam and response measured on the same 
plane. Results are found in column SymU_LaserMeasuredOnUpperPlane. Next the shaker is attached to 
one of the side planes [63.5x1470] of the beam and the laser measured the response of the opposite side 
plane. These results are shown in column SymU_LaserMeasuredOnSidePlane. The results with 
corresponding mode shapes are included in addendum. 
 
 
SymU_LaserMeasured 

OnUpperPlane [Hz] 
Description mode 

shape  SymU_LaserMeasured
OnSidePlane [Hz] 

Description mode 
shape 

32.5 1 torsion mode  146.9 2 complex bending Y-axis
66.25 1 complex bending Y-axis    

135.6 – 139.4 1 bending mode Z-axis    
 
 
Check sensitivity box: program output 
 
Modal data calculated based on initial values can be found in addendum. 
 

  {freq}analyt based on initial 
material properties [Hz]  Description modes hape 

Mode 1 32 1 torsion mode  
Mode 2 61 1 complex bending mode Y-axis 
Mode 3 116 1 bending mode Z-axis 
Mode 4 140 2 complex bending mode Y-axis 
Mode 5 197 1 (rigid) open/close mode side planes
Mode 6 199 2 open/close mode side planes 
Mode 7 207 
Mode 8 217 
Mode 9 221 

Mode 10 235 

Higer order modes 
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The initial values are quite good in the sense that predicted mode shapes correspond with measured ones. 
The first four modes are well separated; with a first torsion mode halve the value of the second mode.   
After the first four modes, the calculation indicates closely spaced modes as there are five modes in a 
frequency band of 24 Hz. This situation was also encountered in practice. Closely spaced modes are more 
difficult to measure. 
 
The sensitivity matrix indicates that the first torsion mode contains information about the shear modulus 

. The next three modes are particular sensitive to a change in value of parameter one, the modulus .  xyG xE
Remark the fact that the response is also sensitive to a change in value of . Especially, modes five and 
six are sensitive with respect to a change in . None of the responses are sensitive to a change in value 
of . No attempt should be made to identify  by measuring natural frequencies. 

yE

yE

xyv xyv
 
There was no indication, what so ever, of  modes five and six in the measured data with vibrometer. 
Probably due to the fact that a single shaker is not optimal to excite mode five. Additional, both modes are 
extremely close to each other. Consequently, further discussion will focus on the determination of  and 

. The first four modes are used to identify  and .  
xE

xyG xE xyG
 
Model Updating results 

 
Initial values 

 [N/mm²] 
Parameter 
 selection 

 Fem data based on initial 
 values versus Exp. data [Hz] 

Mode shape 
switch occur 

Difference initial  
 final values [%] 

Final parameter 
 values [N/mm²] 

Ex Ey Gxy Vxy Ex Ey Gxy Vxy Fem 
 value

Exp.
 value

Description 
 mode Yes No CCABS CCMEAN Ex Ey Gxy Vxy

22000 11800 5000 0,3 X   X   32 32,5 1 torsion   X 7,5 / 2,5 7,5 / O 28944 11800 5014 0,3
                61 66,25 1complex bend Y                 
                116 137,5 1 bending Z                 
                140 146,9 2complex bend Y                 

 
Model Updating results: deviation on initial values 
 

Initial values 
 [N/mm²] 

Parameter 
 selection 

 Fem data based on initial 
 values versus Exp. data [Hz] 

Mode shape 
switch occur 

Difference initial  
 final values [%] 

Final parameter 
 values [N/mm²] 

Ex Ey Gxy Vxy Ex Ey Gxy Vxy Fem 
 value

Exp.
 value

Description 
 mode Yes No CCABS CCMEAN Ex Ey Gxy Vxy

26400 11800 4000 0,3 X   X   29 32,5 1 torsion   X 6.5 / 2.8 -6 / 0 28945 11800 5015 0,3
                63 66,25 1complex bend Y                 
                126 137,5 1 bending Z                 
                146 146,9 2complex bend Y                 

 
Initial values 

 [N/mm²] 
Parameter 
 selection 

 Fem data based on initial 
 values versus Exp. data [Hz] 

Mode shape 
switch occur 

Difference initial  
 final values [%] 

Final parameter 
 values [N/mm²] 

Ex Ey Gxy Vxy Ex Ey Gxy Vxy Fem 
 value

Exp.
 value

Description 
 mode Yes No CCABS CCMEAN Ex Ey Gxy Vxy

17600 11800 6000 0,3 X   X   35 32,5 1 torsion   X 14 / 2.8 -10 / 0 28948 11800 5015 0,3
                59 66,25 1complex bend Y                 
                104 137,5 1 bending Z                 
                132 146,9 2complex bend Y                 

 
 

 
Application of the program 



 87

6.4  AsymmetricU-profile 
 
 
Section properties 
 
Dimensions according to figure (below) 
Moment of inertia : 3788688 mmyI 4 

Moment of inertia : 1216052 mmzI 4

Torsional stiffness factor J : 3611 mm4

 
 

 

127 mm 

76.2 m

3.18 mm 

3.18 mm 

30 mm 56.6 mm

18.1°

3.18 mm

140 mm 

34.2 mm

32.3 mm

 
 
 
Volume properties 
 
Volume : 1576509 mm3 

Mass : 3000 gram 
Density : 1.9029e-9 Mg/mm3

Length : 1470 mm  
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Input geometry 
 
 

  X coord Y coord Thickness 
Segment point 1 0 0   
Segment point 2 0 125.41 3.18 
Segment point 3 136.82 125.41 3.18 
Segment point 4 136.82 50.8 3.18 

        
Length 1470     

 
 
 
Estimation initial values 
 
The initial values for  are obtained by measuring the first bending mode of beam specimen in the span 
direction of the structure. Initial values are obtained by measuring the first bending mode of a beam 
specimen in the width direction of the structure. Results are summarized in next table. 

xE

yE

 
 

Name 
Dimensions  

(widthxlengthxthickness) 
 [mm] 

Mass 
 [ton] 

Volume 
[mm³] 

Density
 [ton/mm³]

Transverse
 section 
 [mm²] 

Moment 
of inertia 
 [mm4] 

Frequency
first bending
 mode [Hz] 

Elasticity
Modulus
[N/mm²] 

X spec1 20,2 x 158 x 3,2 19,4 e-6 10213 1,9 e-9 64,6 55,2 507,5 28159 

X spec2 20,3 x 158 x 3,2 19.5 e-6 10264 1,9 e-9 65 55,4 540 31963 

         

Y spec1 20,2 x 124,2 x 3,2 15,3 e-6 8028 1,9 e-9 64,6 55,2 560 13091 

Y spec2 20,2 x 124,2 x 3,2 15,3 e-6 8028 1,9 e-9 64,6 55,2 567,5 13444 

 
 
Typical engineering properties of a glass-polymer composite are used for  and  (Ref. 1).  xyG xyv
The initial values are 
 
 

  Initial value  
(N/mm²) 

Method used  
to obtain value 

Ex 30000 Resonalyser 
Ey 13260 Resonalyser 
Gxy 5000 Literature 
vxy 0,3 Literature 
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Experimental natural frequencies 
 
The shaker is attached to the upper plane [140x1470] of the beam and response measured on the same 
plane. Results are found in column AsymU_LaserMeasuredOnUpperPlane. Next the shaker is attached 
to the large side plane and response is measured on the opposite small [76.2x1470] plane. These results are 
shown in column AsymU_LaserMeasuredOnSmallSidePlane. Finally, the shaker is attached to the small 
side plane and response is measured on the opposite large [127x1470] plane. Results are shown in column  
AsymU_LaserMeasuredOnLargeSidePlane. The results with corresponding mode shapes are included 
in addendum. 
 
AsymU_Laser 
MeasuredOn 
UpperPlane  

[Hz] 

Description 
 modeshape   

AsymU_Laser
MeasuredOn 

SmallSidePlane
 [Hz] 

Description 
modeshape  

AsymU_Laser 
MeasuredOn 

LargeSidePlane  
[Hz] 

Description 
modeshape 

17,5 1 torsion mode   58,75 1 open / close mode 
side planes  58,75 1 open / close mode 

side planes 

58,75 1 open / close mode 
side planes        70,63 4 open / close mode 

side planes 

70,63 4 open / close mode 
side planes        83,75 5 open / close mode 

side planes 

 
 
Check sensitivity box: program output 
 
Modal data calculated based on initial values can be found in addendum. 
 

  {freq}analyt based on initial 
material properties [Hz]  Description modeshape 

Mode 1 16 1 torsion mode 
Mode 2 60 1 open/close mode side planes 
Mode 3 66 2 (rigid) open/close mode side planes 
Mode 4 68 3 open/close mode side planes 
Mode 5 74 4 open/close mode side planes 
Mode 6 90 5 open/close mode side planes 
Mode 7 111 6 open/close mode side planes 
Mode 8 120 1 bending mode Z-axis 
Mode 9 136 7 open/close mode side planes 

Mode 10 152 2 bending mode Z-axis 
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For this profile (torsion excluded), all modes behave in a similar manner. The upper plane of the profile 
has almost no movement, instead the webs of the profile are moving out- or inwards. These modes are 
called “open/close mode side planes” and are particular sensitive for a change in value of . 
Unfortunately, modes three and four are very difficult to measure in practice. First, they are very close to 
each other. Secondly, a single shaker is not optimal to excite this kind of modes.  

yE

 
Again the first torsion mode, has a high sensitivity for parameter three or . Initial value calculation 
indicates that this mode will not interfere with higher order modes. 

xyG

 
The first ten response frequencies show a very low sensitivity for parameter 1 or . Consequently, it is 
not possible to identify  by measuring the first natural frequencies of this profile.  Longitudinal bending 
modes do not occur. This is probably the reason why the sensitivity for  is so low. The same profile 
with longer span can probably solve this problem. The longer the beam, the more likely longitudinal 
bending modes will occur. To investigate the above statement, the sensitivity matrix is calculated for a 
beam with same section properties but with double span length [2940 mm]. This sensitivity matrix is 
shown below. 

xE

xE

xE

 
As expected, the response of a longer beam is more sensitive with respect to parameter . However, note 
that shear modulus  sensitivity is very low. The original beam’s [1470 mm span] first mode is very 
sensitive to a change in value of . The program can be used to analyse one particular structure of a 
certain length. This is in fact what is done in this thesis. However, the program can also be used to 
investigate the influence of the length on the sensitivity response versus parameter. As such, one can 
determine the most ideal length to identify a certain material property.  

xE

xyG

xyG

 
In the sequel, the model is updated for parameters  and  making use of the first two responses. yE xyG
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Model Updating results 
 
 

Initial values 
 [N/mm²] 

Parameter 
 selection 

 Fem data based on initial 
 values versus Exp. data [Hz] 

Mode shape 
switch occur 

Difference initial  
 final values [%] 

Final parameter 
 values [N/mm²] 

Ex Ey Gxy Vxy Ex Ey Gxy Vxy Fem 
 value

Exp.
 value

Description 
 mode Yes No CCABS CCMEAN Ex Ey Gxy Vxy

30000 13260 5000 0,3   X X   16 17,5 1 torsion   X 6 / O  - 4 / O 30000 11185 6275 0,3

                60 58,75 1 open/close mode
side planes                 

 
 
Modes five and six are measured with the vibrometer. The frequencies of these two modes are respectively 
70.63 Hz and 83.75 Hz. Recalculation with updated material properties, gives a frequency of 74 Hz and 90 
Hz for modes five and six.  
 
Model Updating results: deviation on initial values 
 

Initial values 
 [N/mm²] 

Parameter 
 selection 

 Fem data based on initial 
 values versus Exp. data [Hz] 

Mode shape 
switch occur 

Difference initial  
 final values [%] 

Final parameter 
 values [N/mm²] 

Ex Ey Gxy Vxy Ex Ey Gxy Vxy Fem 
 value

Exp.
 value

Description 
 mode Yes No CCABS CCMEAN Ex Ey Gxy Vxy

30000 15912 4000 0,3   X X   14 17,5 1 torsion   X 13 / 0 -6.5 / 0 30000 11194 6267 0,3

                62 58,75 1 open/close mode
side planes                 

 
 

Initial values 
 [N/mm²] 

Parameter 
 selection 

 Fem data based on initial 
 values versus Exp. data [Hz] 

Mode shape 
switch occur 

Difference initial  
 final values [%] 

Final parameter 
 values [N/mm²] 

Ex Ey Gxy Vxy Ex Ey Gxy Vxy Fem 
 value

Exp.
 value

Description 
 mode Yes No CCABS CCMEAN Ex Ey Gxy Vxy

30000 10608 6000 0,3   X X   17 17,5 1 torsion   X 2.2 / 0 -2.2 / 0 30000 11149 6273 0,3

                57 58,75 1 open/close mode
side planes                 
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6.5 Complex-profile 
 
 
Section properties 
 
Dimensions according to figure (below) 
Moment of inertia : 1310000 mmyI 4 

Moment of inertia : 4100000 mmzI 4

Torsional stiffness factor J : 17186 mm4

 
 

89.8 mm

5.08 mm

5.08 mm 

5.08 mm 5.08 mm

5.08 mm

5.08 mm 

31.7 mm 

147 mm 

40.6 mm 

7.7 mm 

61 mm 

5.2 mm 9 ° 
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Volume properties 
 
Volume : 2898840 mm3 

Mass : 5457 gram 
Density : 1.8825e-9 Mg/mm3

Length : 1470 mm  
 
Input geometry 
 
 

  X coord Y coord Thickness 
Segment point 1 0 0   
Segment point 2 87.27 0 5.08 
Segment point 3 87.27 70.1 5.08 
Segment point 4 87.27 144.42 5.08 
Segment point 5 87.27 70.1 0 
Segment point 6 50.49 70.1 5.08 
Segment point 7 50.49 144.42 5.08 
Segment point 8 50.49 70.1 0 
Segment point 9 0 70.1 5.08 

        
Length 1470     

 
 
Estimation initial values 
 
The initial values for  are obtained by measuring the first bending mode of beam specimen in the span 
direction of the structure. Initial values are obtained by measuring the first bending mode of a beam 
specimen in the width direction of the structure. Results are summarized in next table. 

xE

yE

 
 

Name 
Dimensions  

(widthxlengthxthickness) 
 [mm] 

Mass 
 [ton] 

Volume 
[mm³] 

Density 
 [ton/mm³] 

Transverse 
 section 
 [mm²] 

Moment 
of inertia 
 [mm4] 

Frequency
first bending
 mode [Hz] 

Elasticity
Modulus
[N/mm²] 

X spec1 20,6 x 157,5 x 5,1 30,8 e-6 16547 1,9 e-9 105,1 227,7 645 17714 

X spec2 20,8 x 159 x 5,1 30,5 e-6 16867 1,8 e-9 106,1 230,0 642,5 17285 

         

Y spec1 20,6 x 64 x 5,1 12,5 e-6 6724 1,9 e-9 105,1 227,7 4063 19164 

Y spec2 20,4 x 64 x 5,1 12,5 e-6 6659 1,9 e-9 104 225,5 4063 19148 

 
Typical engineering properties of a glass-polymer composite are used for  and  (Ref. 1).  xyG xyv
The initial values are 
 

  Initial value  
(N/mm²) 

Method used  
to obtain value 

Ex 17500 Resonalyser 
Ey 19156 Resonalyser 
Gxy 5000 Literature 
vxy 0,3 Literature 
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Experimental natural frequencies 
 
The shaker is attached to the lower plane [89.8x1470] of the beam and response measured on the opposite 
top plane. Results are found in column Complex_LaserMeasuredOnUpperPlane. Next the shaker is 
attached to the large side plane and response is measured on the same plane [147x1470] plane. These 
results are shown in column Complex_LaserMeasuredOnSidePlane. Finally, the shaker is attached to 
the top plane and response is measured on the opposite bottom [89.8x1470] plane. Results are shown in 
column Complex_LaserMeasuredOnBottomPlane. The results with corresponding mode shapes are 
included in addendum. 
 
 
Complex_Laser 

MeasuredOn 
UpperPlane  

[Hz] 

Description 
 modeshape   

Complex_Laser
MeasuredOn 

SidePlane 
 [Hz] 

Description 
modeshape  

Complex_Laser 
MeasuredOn 
BottomPlane  

[Hz] 

Description 
modeshape 

38.75 1 torsion mode   38.13 1 torsion mode  105.6 mode 2 

     105.6  mode 2  151.9 1 bending mode Y-
axis 

     151.3 1 bending mode Y-axis    

 
Check sensitivity box: program output 
 
Modal data calculated based on initial values can be found in addendum. 
 

  {freq}analyt based on initial 
material properties [Hz]  Description modeshape 

Mode 1 33 1 torsion mode 
Mode 2 90 mode 2 
Mode 3 128 1 bending mode Y-axis 
Mode 4 191 1 (rigid) open/close mode side planes 
Mode 5 194 2 open/close mode side planes 
Mode 6 199 mode 6 
Mode 7 210 3 open/close mode side planes 
Mode 8 228 4 open/close mode side planes 
Mode 9 272 5 open/close mode side planes 

Mode 10 280 mode 10 
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Here again, modes four and five are “open/close modes side planes” and show a high sensitivity with 
respect to parameter . Also here the measured data did not contain any information about those two 
modes. 

yE

 
What would be the effect of halving the span length [735 mm] of the beam? Probably, the sensitivities 
for  will go down, while the first mode will stay the torsion mode. This can be investigated by using the 
program. The resulting sensitivity matrix is shown below. 

xE

 

 
 
For the short beam, the torsion frequency is still the first mode encountered and has a value of 65 Hz. The 
next mode at 190 Hz is the “rigid open/close side planes” mode. It is clear that by modifying the length of 
the beam, one can make the responses more sensitive to a preferred parameter. Moreover, one can tune the 
length in such a way that succeeding frequencies are well separated. Hence, the different frequencies are 
more easily detected during measurements.   
 
The torsion mode is well separated from the higher order modes and shows good sensitivity with respect to 

. The first mode is used to identify . Mode two and three are used to identify . xyG xyG xE
 
 
Model Updating results 
 
 

Initial values 
 [N/mm²] 

Parameter 
 selection 

 Fem data based on initial 
 values versus Exp. data [Hz] 

Mode shape 
switch occur 

Difference initial  
 final values [%] 

Final parameter 
 values [N/mm²] 

Ex Ey Gxy Vxy Ex Ey Gxy Vxy Fem 
 value

Exp.
 value

Description 
 mode Yes No CCABS CCMEAN Ex Ey Gxy Vxy

17500 19156 5000 0,3 X   X   33 38,75 1 torsion   X 14 / O  -14 / O 25331 19156 6782 0,3
                90 105,6 mode 2                 
                128 151,6 1 bending Y                 
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Mode Updating results: deviation on initial values 
 
 

Initial values 
 [N/mm²] 

Parameter 
 selection 

 Fem data based on initial 
 values versus Exp. data [Hz] 

Mode shape 
switch occur 

Difference initial  
 final values [%] 

Final parameter 
 values [N/mm²] 

Ex Ey Gxy Vxy Ex Ey Gxy Vxy Fem 
 value

Exp.
 value

Description 
 mode Yes No CCABS CCMEAN Ex Ey Gxy Vxy

21000 19156 4000 0,3 X   X   30 38,75 1 torsion   X 15 / 1 -15 / 0 25331 19156 6782 0,3
                94 105,6 mode 2                 
                137 151,6 1 bending Y                 

 
 
 

Initial values 
 [N/mm²] 

Parameter 
 selection 

 Fem data based on initial 
 values versus Exp. data [Hz] 

Mode shape 
switch occur 

Difference initial  
 final values [%] 

Final parameter 
 values [N/mm²] 

Ex Ey Gxy Vxy Ex Ey Gxy Vxy Fem 
 value

Exp.
 value

Description 
 mode Yes No CCABS CCMEAN Ex Ey Gxy Vxy

14000 19156 6000 0,3 X   X   36 38,75 1 torsion  X 16 / 1 - 16 / 0 25331 19156 6782 0,3
                86 105,6 mode 2                 
                117 151,6 1 bending Y                 
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Chapter Seven: Conclusions 
 
 
 
This thesis gives an answer to the question: “Is it possible to determine global effective 
orthotropic material properties by measuring a certain amount of natural frequencies of a 
composite structure?”. A program written in FEMtools is developed. In first instance the 
program is used to identify the material properties of a steel beam. Results are in line of 
expectation. Afterwards, the program is applied to four composite structures with unknown 
material properties. In the set of four, there is one closed box beam and three beams with an open 
cross-section. This set is too small to state some general conclusions concerning the 
identification of material properties of slender composite structures. However, some general 
trends are clearly observed. 
 
For the closed box beam, values for and can be identified using the program. The natural 
frequencies of the beam are not sensitive to change in value of and . Hence, it is not 
possible to determine these values by measuring natural frequencies. 

xE xyG

yE xyv

 
The natural frequencies of beams with open cross section are sensitive to a change in value of  

, and . Hence, there is a possibility to identify these properties by measuring natural 
frequencies. The frequencies sensitive to a modification of , are more difficult to measure in 
practise. The mode shapes corresponding with these frequencies, are those in which the section 
goes open and close. It is not possible to identify values for . 

xE yE xyG

yE

xyv
 
The program needs initial values for orthotropic material properties, before identification can 
start. The initial values are obtained making use of the Resonalyser procedure. A deviation of   
25 %  given on estimated initial values,  results in the same final updated values for the 
parameters. Hence, the final updated results are almost not sensitive to a deviation of initial 
values.   
 
The program can also be used to study the influence of the length of the structure on the 
possibility to identify certain parameters. Consequently, an optimal length can be determined for 
which the first (two) frequencies are very sensitive to a change in value of a preferred parameter. 
Making it possible to identify orthotropic material properties in a more easy and structured 
manner. 
 
 
 
 
 
 
 
 
 

 
Conclusions 
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